Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T06:16:47.405Z Has data issue: false hasContentIssue false

Growth, abdominal fat content, heat production and plasma hormone levels of naked-neck and control broiler chickens

Published online by Cambridge University Press:  25 May 2016

E. Decuypere
Affiliation:
Leuven Poultry Research Group, K.U. Leuven, Kardinaal Mercierlaan 92, 3001 Heverlee, Belgium
P. Mérat
Affiliation:
Laboratoire de Génétique Factorielle, INRA, Domaine de Vilvert, 78352 Jouy-en-Josas, France
J. Zoons
Affiliation:
Leuven Poultry Research Group, K.U. Leuven, Kardinaal Mercierlaan 92, 3001 Heverlee, Belgium
J. Vloeberghs
Affiliation:
Leuven Poultry Research Group, K.U. Leuven, Kardinaal Mercierlaan 92, 3001 Heverlee, Belgium
Get access

Abstract

The depressing effect of high rearing temperature (30°C) on body weights of heterozygous naked-neck broiler chickens was apparently less pronounced than in control broiler chickens but no effect of genotype, rearing temperature or interaction on abdominal fat pad content was found. Both genotype and rearing temperature affected plasma tri-iodothyronine but not growth hormone or insulin-like growth factor 1 levels in plasma. Rearing temperature of 20°C or 30°C had effect neither on the slope of the thermoregulatory heat production curves nor on the lower critical temperature in either genotypes except at 4 weeks of age.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barott, A. G. and Pringle, E. M. 1946. Energy and gaseous metabolism of the chicken from hatch to maturity as affected by temperature. Journal of Nutrition 31: 3550.Google Scholar
Berghman, L. R., Van Beeumen, J., Decuypere, E., Kuhn, E. R. and Vandesande, F. 1988. One step purification of chicken growth hormone from a crude pituitary extract by use of a monoclonal immunoadsorbent. Journal of Endocrinology 118:381387.Google Scholar
Bobek, D., Niezgoda, J., Pietras, M., Kalinska, M. and Ewy, Z. 1980. The effect of acute cold and warm ambient temperatures on the thyroid hormone concentration in blood, plasma, blood supply, and oxygen consumption in Japanese quail. General and Comparative Endocrinology 40: 201210.Google Scholar
Bordas, A., Mérat, P., Sergent, D. and Ricard, F. H. 1978. Influence du gene (“Cou-nu”) sur la croissance, la consommation alimentaire et la composition corporelle du poulet selon la température ambiente. Annales Génétiques et Sélection Animales 10: 209231.CrossRefGoogle Scholar
Buyse, J., Decuypere, E., Huyghebaert, G. and Herremans, M. 1991. The effect of clenbuterol supplementation on growth performance and on plasma hormone and metabolite levels of broilers. Poultry Science 70: 9931002.CrossRefGoogle ScholarPubMed
Classen, H. L. and Smyth, J. R. 1977. The influence of pea comb and naked neck on pterilae width in domestic fowl. Poultry Science 56:16831685.Google Scholar
Decuypere, E. and Kuhn, E. R. 1988. Alterations in thyroid hormone physiology induced by temperature and feeding in newly hatched chickens. Acta Physiologica Polonica 39: 380393.Google ScholarPubMed
Harvey, S., Scanes, C. G., Bolton, N. Y. and Chadwick, A. 1977. Effects of heat, cold and ether stress on the secretion of growth hormone (GH), prolactin and luteinizing hormone (LH) in immature chickens. IRCS Medical Science 5:141.Google Scholar
Herremans, M., El Azim, A. A., Merat, P. and Decuypere, E. 1988. Some physiological, morphological and production parameters associated with the naked neck gene (Na) in dwarf (dw) laying hens. Archiv für Geflügelkunde 52:181187.Google Scholar
Horst, P. and Rauen, H. W. 1986. Significance of the naked neck gene (Na-gene) in poultry breeding in the tropics. Proceedings of the seventh European Poultry Conference, Paris, pp. 191195.Google Scholar
Howlider, M. A. R. and Rose, S. P. 1987. Temperature and the growth of broilers. World's Poultry Science Journal 43: 228237.CrossRefGoogle Scholar
Huybrechts, L. M., King, D. B., Lauterio, T. J., Marsh, J. and Scanes, C. G. 1985. Plasma concentrations of somatomedin-C in hypophysectomized, dwarf and intact growing domestic fowl as determined by a heterologous radioimmunoassay. Journal of Endocrinology 104:232239.CrossRefGoogle ScholarPubMed
Huybrechts, L. M., Michielsen, R., Darras, V. M., Buonomo, F. C., Kuhn, E. R. and Decuypere, E. 1989. Effect of the sex-linked dwarf gene on thyrotropic and somatotropic axes in the chick embryo. Reproduction Nutrition Developpement 29:219226.CrossRefGoogle Scholar
Kuhn, E. R., Decuypere, E., Colen, L. M. and Michels, H. 1982. Posthatch growth and development of a circadian rhythm for thyroid hormones in chicks incubated at different temperatures. Poultry Science 61: 540549.CrossRefGoogle ScholarPubMed
Kuhn, E. R., Decuypere, E., Huybrechts, L. M. and Darras, V. M. 1990. Hormonal control of the hepatic 5'-monodeiodination activity and its relation to the somatomedin production in the chicken. In Endocrinology of birds: molecular to behavioural (ed. Wada, M.), pp. 129142. Tokyo.Google Scholar
Kuhn, E. R., Decuypere, E. and Rudas, P. 1984. Hormonal and environmental interactions on thyroid function in the chick embryo and posthatching chicken. Journal of Experimental Zoology 232: 653658.CrossRefGoogle ScholarPubMed
Leenstra, F. R. 1986. Effect of age, sex, genotype and environment on fat deposition in broiler chickens — a review. World's Poultry Science Journal 42:1225.CrossRefGoogle Scholar
Lou, M. L., Quoi, O. K. and Smith, W. K. 1992. Effects of naked neck gene and feather growth rate on broilers in two temperatures. Proceedings of the nineteenth world's poultry congress, Amsterdam, vol. 2, pp. 62.Google Scholar
Mérat, P. 1986. Potential usefulness of the Na (naked neck) gene in poultry production. World's Poultry Science Journal 42:124142.CrossRefGoogle Scholar
Mérat, P. 1990. Pleiotropic and associated effects of major genes. In Poultry breeding and genetics (ed. Crawford, R. D.), pp. 429467. Developments in Animal and Veterinary Sciences, no. 22. Elsevier.Google Scholar
Romijn, C. and Lokhorst, W. 1961. Some aspects of energy metabolism in birds. In Energy metabolism of farm animals (ed. Brouwer, E. and Van Es, A. J. H.), proceedings of the second symposium of the European Association of Animal Production no. 10, Lunteren, pp. 4959.Google Scholar
Rudas, P. and Pethes, G. 1984. The importance of the peripheral thyroid hormone deiodination in adaptation to ambient temperature in the chicken. Comparative Biochemistry and Physiology 77: 567571.Google Scholar
Scott, T. R. and Washburn, K. W. 1985. Strain differences in serum corticosterone, growth hormone and thyroxine of young chicks reared in two different brooding temperature environments. Poultry Science 64:212220.CrossRefGoogle Scholar
Sinurat, A. P., Balnave, D. and McDowell, G. H. 1987. Growth performance and concentrations of thyroid hormones and growth hormone in plasma of broilers at high temperatures. Australian Journal of Biological Science 40: 443450.CrossRefGoogle ScholarPubMed
Statistical Analysis Systems Institute. 1985. SAS/STAT Guide for personal computers, version 6. SAS Institute Inc., Cary, NC.Google Scholar