Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T02:46:40.045Z Has data issue: false hasContentIssue false

Ileal digestibility of raw and autoclaved kidney-bean (Phaseolus vulgaris) seed meals in cannulated pigs

Published online by Cambridge University Press:  09 March 2007

L. A. Rubio*
Affiliation:
Estación Experimental del Zaidín, Unidad de Nutrición, Profesor Albareda 1, 18008 Granada, Spain
*
Get access

Abstract

Five castrated male pigs (100±2 kg mean live weight) fitted with T-shaped ileal cannulae were used to determine ileal digestibility of raw or autoclaved (136°C, 3 min, 2·3 bar) kidney-bean seed meals, which were included (536 g/kg) in the diet as the only protein source. A protein-free and a diet based on hydrolysed casein were used to estimate endogenous protein secretion. Apparent ileal digestibility of dry matter was lower (P < 0·05) for raw compared to autoclaved kidney-bean meal. Apparent and true ileal digestibilities of raw kidney-bean meal were not only lower (P < 0·05) than those of autoclaved kidney beans, but negative or close to zero for N and some amino acids. Ileal N (36·9 g/kg food ingested) and sialic acid (3·5 g/kg food ingested) flows in pigs given the raw kidney-bean-based diet were higher (P < 0·05) than those of pigs given the autoclaved kidney-bean diet (respectively 8·9 and 1·4 g/kg food ingested). Autoclaved kidney beans contained 364 and 143 g/kg of starch and non-starch polysaccharides respectively, the ileal digestibilities of which were 0·79 and 0·26. Among individual non-starch polysaccharide sugars, apparent ileal digestibility values were between 0 (rhamnose) and 0·38 (arabinose). Ileal apparent digestibility of total oligosaccharides in the autoclaved kidney bean diet was 0·52, and total amounts of oligosaccharides digested was 18·6 g/kg food. Among individual short-chain fatty acids in ileal contents, only propionate values were signifi cantly (P < 0·05) different between pigs given raw or autoclaved kidney-bean diets. Lactate concentration in ileal contents was higher (P < 0·05) in pigs given autoclaved compared with raw kidney beans. Ileal digestibility of autoclaved kidney-bean meal in the 10-kg pigs was poorer than that of other raw legume-seed meals such as lupins and chickpeas in other studies. The potential health implications of these results are also discussed.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilera, J. F., Prieto, C., Molina, E. and Lachica, M. 1988. A micromethod for routine determination of chromic oxide in nutrition studies. Analusis 16: 454457.Google Scholar
Association of Official Analytical Chemists. 1984. Official methods of analysis, 14th edition. AOAC, Arlington, VA.Google Scholar
Begbie, R. and Ross, A. W. 1993. Resistance of the kidney bean reserve protein, phaseolin, to proteolysis in the porcine digestive tract. Journal of the Science of Food and Agriculture 61: 301307.CrossRefGoogle Scholar
Bressani, R., Hernández, E., Navarrete, D. and Braham, J. E. 1984. Protein digestibility of methionine supplemented common beans ( Phaseolus vulgaris) in adult human subjects. Archivos Latinoamericanos de Nutrición 34: 640653.Google ScholarPubMed
Candela, M., Astiasarán, I. and Bello, J. 1997. Cooking and warm holding: effect on general composition and amino acids of kidney beans ( Phaseolus vulgaris), chickpeas (Cicer arietinum), and lentils (Lens culinaris). Journal of Agriculture and Food Chemistry 45: 47634767.CrossRefGoogle Scholar
Canibe, N. and Eggum, B. O. 1997. Digestibility of dried and toasted peas in pigs. 2. Ileal and total tract digestibilities of amino acids, protein and other nutrients. Animal Feed Science and Technology 64: 311325.CrossRefGoogle Scholar
Champ, M. M.-J. 2002. Non-nutrient bioactive substances of pulses. British Journal of Nutrition 88: (suppl. 3) 307319.CrossRefGoogle ScholarPubMed
Costa, N. M. B., Low, A. G., Walker, A. F., Owen, R. W. and Englyst, H. N. 1994. Effect of baked beans ( Phaseolus vulgaris) on steroid metabolism and non-starch polysaccharide output of hypercholesterolemic pigs with or without an ileo-rectal anastomosis. British Journal of Nutrition 71: 871886.CrossRefGoogle ScholarPubMed
Desrochers, N. and Brauer, P. M. 2001. Legume promotion in counseling: an e-mail survey of dieticians. Canadian Journal of Dietary Practical Research 62: 193198.Google Scholar
Dreau, D., Lalles, J. P., Philouze-Rome, V., Toullec, R. and Salmon, H. 1994. Local and systemic immune responses to soybean protein ingestion in early-weaned pigs. Journal of Animal Science 72: 20902098.CrossRefGoogle ScholarPubMed
Eggum, B. O. 1985. Digestibility of plant proteins: animal studies. In Digestibility and amino acid availability in cereals and oilseeds (ed.Finley, J. W. and Hopkins, D. T.), pp. 275283. American Association of Cereal Chemists, St Paul, Minnesota.Google Scholar
Englyst, H. N., Quigley, M. E., Hudson, G. J. and Cummings, J. H. 1992. Determination of dietary fi ber as non-starch polysaccharides by gas-liquid chromatography. Analyst 117: 17071714.CrossRefGoogle Scholar
Food and Agriculture Organization/World Health Organization. 1985. Protein quality evaluation. In Energy and protein requirements. Reports of a joint meeting. Technical reports series no. 724. WHO, Geneva.Google Scholar
Gianazza, E., Eberini, I., Arnoldi, A., Wait, R. and Sirtori, C. R. 2003. A proteomic investigation of isolated soy proteins with variable effects in experimental and clinical studies. Journal of Nutrition 133: 914.CrossRefGoogle ScholarPubMed
Grala, W., Buraczewska, L., Wasilewko, J., Verstegen, M. W. A., Tamminga, S., Jansman, A. J. M., Huisman, J. and Korcynsky, W. 1998. Flow of endogenous and exogenous nitrogen in different segments of the small intestine in pigs fed diets with soybean concentrate, soybean meal or rapeseed cake. Journal of Animal Feed Science 7: 120.CrossRefGoogle Scholar
Grala, W., Verstegen, M. W. A., Jansman, A. J. M., Huisman, J., Leeuwen van, P. and Tamminga, S. 1999. Effects of ileal endogenous nitrogen losses and dietary amino acid supplementation on nitrogen retention in growing pigs. Animal Feed Science and Technology 80:CrossRefGoogle Scholar
Grant, G. 1991. Legumes. In Toxic substances in crop plants (ed. D'Mello, J. P. F., Duffus, C. M. and Duffus, J. H.), pp. 4967. Royal Society of Chemistry, Cambridge.CrossRefGoogle Scholar
Guillon, F. and Champ, M. M. -J. 2002. Carbohydrate fractions of legumes: uses in human nutrition and potential for health. British Journal of Nutrition 28: (suppl. 3) S293–S306.CrossRefGoogle Scholar
Huisman, J., Heinz, T. H., Poel, A. F. B. van der, Leeuwen, P. van, Souffrant, W. B. and Verstegen, M. W. A. 1992. True protein digestibility and amounts of endogenous protein measured with the 15N-dilution techniques in piglets fed on peas ( Pisum sativum) and common beans ( Phaseolus vulgaris). British Journal of Nutrition 68: 101110.CrossRefGoogle ScholarPubMed
Jansman, A. J. M., Verstegen, M. W. A., Huisman, J. and Berg, J. W. O. van den. 1995. Effects of hulls of faba beans ( V. faba L.) with a low or high content of condensed tannins on the apparent ileal and fecal digestibility of nutrients and the excretion of endogenousprotein in ileal digesta and faeces of pigs. Journal of Animal Science 73: 118127.CrossRefGoogle ScholarPubMed
Jensen, B. B. 2001. Possible ways of modifying type and amounts of products from microbial fermentation in the gut. In Gut environment of pigs (ed. Piva, A., Bach Knudsen, K. E. and Lindberg, J. E.), pp. 181200. Nottingham University Press.Google Scholar
Key, F. and Mathers, J. C. 1993. Complex carbohydrate digestion and large bowel fermentation in rats given wholemeal bread and cooked haricot beans(Phaseolus vulgaris) fed in mixed diets. British Journal of Nutrition 69: 497509.CrossRefGoogle Scholar
Lallés, J. P., Huet, A., Quillien, L., Plumb, G. W., Mills, E. N. C., Morgan, M. R. A. and Toullec, R. 1998. Duodenal passage of immunoreactive glycinin and β-conglycinin from soya bean in preruminant calves. In Recent advances of research in antinutritional factors in legume seeds (ed. Jansman, A. J. M., Hill, G. D., Huisman, J. and van der Poel, A. F. B.), pp. 255258. Wageningen Pers, Wageningen, The Netherlands.Google Scholar
Lallés, J. P., Salmon, H., Bakker, N. P. M. and Tolman, G. H. 1993. Effects of dietary antigens on health, performance and immune system of calves and piglets. In Recent advances of research in antinutritional factors in legume seeds (ed. Poel, A. F. B., Huisman, J. and Saini, H. S.), pp. 253270. Wageningen Pers, Wageningen, The Netherlands.Google Scholar
Lallés, J. P., Tukur, H. M., Toullec, R. and Miller, B. G. 1996. Analytical criteria for predicting apparent digestibility of soybean protein in preruminant calves. Journal of Dairy Science 79: 474482.CrossRefGoogle ScholarPubMed
Leterme, P. 2002. Recommendations by health organizations for pulse consumption. British Journal of Nutrition 88: (suppl. 3) 239242.CrossRefGoogle ScholarPubMed
Leterme, P., Théwis, A., Francois, E., Leeuwen, P. van, Wathelet, B. and Huisman, J. 1996. The use of 15N-labeled dietary proteins for determining true ileal amino acids digestibilities is limited by their rapid recycling in the endogenous secretions of pigs. Journal of Nutrition 126: 21882198.CrossRefGoogle ScholarPubMed
Li, D. F., Nelssen, J. L., Reddy, P. G., Blecha, F., Klemm, R. D., Giesting, D. W., Hancock, J. D., Allee, G. L. and Goodband, R. D. 1991. Measuring suitability of soybean products for early-weaned pigs with immunological criteria. Journal of Animal Science 69: 32993307.CrossRefGoogle ScholarPubMed
Liener, I. E. 1994. Implications of antinutritional components in soybean foods. Critical Reviews in Food Science and Nutrition 34: 3167.CrossRefGoogle ScholarPubMed
Loo, J. van, Cummings, J., Delzenne, N., Englyst, H., Franck, A., Hopkins, M., Kok, N., Macfarlane, G., Newton, D., Quigley, M., Roberfroid, M., Vliet, T. van and Heuvel, E. den. 1999. Functional food properties of non-digestible oligosaccharides: a consensus report from the ENDO project (DGXII AIRII-CT94–1095). British Journal of Nutrition 81: 121132.CrossRefGoogle ScholarPubMed
Low, A. G. 1989. Secretory response of the pig gut to non-starch polysaccharides. Animal Feed Science and Technology 23: 5562.CrossRefGoogle Scholar
McPherson, L. 1991. Effects of the consumption of fully cooked red kidney beans ( Phaseolus vulgaris) on the growth rate of rats and the morphology of the gut wall. Journal of the Science of Food and Agriculture 57: 611621.CrossRefGoogle Scholar
Mantle, M. and Allen, A. 1981. Isolation and characterization of the native glycoprotein from pig small-intestinal mucus. Biochemical Journal 195: 267275.CrossRefGoogle ScholarPubMed
Mathers, J. C., Smith, H. and Carter, S. 1997. Dose-response effects of raw potato starch on small-intestinal escape, largebowel fermentation and gut transit time in the rat. British Journal of Nutrition 78: 10151029.CrossRefGoogle ScholarPubMed
Miller, E. R. and Ullrey, D. E. 1987. The pig as a model for human nutrition. Annual Reviews in Nutrition 7: 361382.CrossRefGoogle Scholar
Ministerio de Agricultura, Pesca y Alimentación. 1984. Tablas de composición de primeras materias para nutrición animal. Madrid, Spain.Google Scholar
Modler, H. W., McKellar, R. C. and Yaguchi, M. 1990. Bifi dobacteria and bifi dogenic factors. Canadian Institute of Food Science and Technology Journal 23: 2941.CrossRefGoogle Scholar
Mossé, J. 1990. Nitrogen to protein conversion factor for ten cereals and six legumes or oilseeds. A reappraisal of its defi nition and determination. Variation according to species and to seed protein content. Journal of Agriculture and Food Chemistry 38: 1824.CrossRefGoogle Scholar
Moughan, P. J. 2003. Amino acid availability: aspects of chemical analysis and bioassay methodology. Nutrition Research Reviews 16: 127141.CrossRefGoogle Scholar
Muzquiz, M., Rey, C., Cuadrado, C. and Fenwick, G. R. 1992. Effect of germination on the oligosaccharide content of lupin species. Journal of Chromatography 607: 349352.CrossRefGoogle Scholar
National Research Council. 1998. Nutrient requirements of swine, tenth revised edition. National Academy Press, Washington, DC.Google Scholar
Nielsen, S. 1991. Digestibility of legume proteins. Food Technology 45: 112118.Google Scholar
Nyachoti, C. M., De Lange, C. F. M., McBride, B. W. and Schulze, H. 1997. Significance of endogenous gut nitrogen losses in the nutrition of growing pigs: a review. Canadian Journal of Animal Science 77: 149163.CrossRefGoogle Scholar
Oliveira, A. C. and Sgarbieri, V. C. 1986. Effects of diets containing dry beans ( Phaseolus vulgaris) on the rat excretion of endogenous nitrogen. Journal of Nutrition 116: 23872392.CrossRefGoogle Scholar
Playne, M. J. 1985. Determination of ethanol, volatile fatty acids, lactic acid and succine acids in fermentation liquids by gas chromatography. Journal of the Science of Food and Agriculture 36: 638643.CrossRefGoogle Scholar
Poel, A. F. B. van der. 1990. Effect of processing on antinutritional factors and protein nutritional value of dry beans ( Phaseolus vulgaris). A review. Animal Feed Science and Technology 29: 179208.CrossRefGoogle Scholar
Poel, A. F. B. van der, Blonk, J., Huisman, J. and Hartog, L. A. den. 1991. Effect of steam processing temperature and time on the protein nutritional value of Phaseolus vulgaris beans for swine. Livestock Production Science 28: 305319.CrossRefGoogle Scholar
Pusztai, A. 1991. Plant lectins. Cambridge University Press, Cambridge.Google Scholar
Rémésy, C. and Demigné, C. 1989. Specifi c effects of fermentable carbohydrates on blood urea fl ux and ammonia absorption in the rat caecum. Journal of Nutrition 119: 560565.CrossRefGoogle Scholar
Romero, E. L., Pardo, M. F., Porro, S. and Alonso, S. 1997. Sialic acid measurement by a modifi ed Aminoff method: a timesaving reduction in 2-thiobarbituric aid concentration. Journal of Biochemical and Biophysical Methods 35: 129134.CrossRefGoogle Scholar
Rubio, L. A. 2000. Physiological effects of legume storage proteins. Nutrition Abstracts and Reviews (Series A) 70: 197204.Google Scholar
Rubio, L. A. 2003 a. Portal vein, hepatic vein and circulating plasma amino acids in rats given diets based on lactalbumin, faba bean (Vicia faba) and chickpea (Cicer arietinum). Animal Science 77:Google Scholar
Rubio, L. A. 2003 b. Determination of diaminopimelic acid in rat feces by high-performance liquid chromatography using the Pico tag method. Journal of Chromatography B 784: 125129.Google ScholarPubMed
Rubio, L. A. 2003 c. Carbohydrates digestibility and fecal Nexcretion in rats fed raw and germinated faba bean- ( Vicia faba) and chickpea- (Cicer arietinum) based diets. British Journal of Nutrition 90: 301309.CrossRefGoogle Scholar
Rubio, L. A. 2005. Ileal digestibility of defatted soybean, lupin and chickpea meals in cannulated Iberian pigs. 1. Proteins. Journal of the Science of Food and Agriculture. In press.Google Scholar
Rubio, L. A., Grant, G., Daguid, T., Brown, D., Bardocz, S. and Pusztai, A. 1998. The nutritional utilization by rats of chickpea (Cicer arietinum) meal and its isolated globulin proteins is poorer than that of defatted soybean or lactalbumin. Journal of Nutrition 128: 10421047.CrossRefGoogle ScholarPubMed
Rubio, L. A., Grant, G., Scislowsky, P., Brown, D.,Annand, M. and Pusztai, A. 1995. The utilization of lupin (Lupinus angustifolius) and faba bean globulins by rats is poorer than of soybean globulins or lactalbumin but the nutritional value of lupin seed meal is lower only than that of lactalbumin. Journal of Nutrition 125: 21452155.CrossRefGoogle ScholarPubMed
Rubio, L. A., Pedrosa, M. M., Pérez, A., Cuadrado, C., Burbano, C. and Muzquiz, M. 2005. Ileal digestibility of defatted soybean, lupin and chickpea meals in cannulated Iberian pigs. 2. Fatty acids and carbohydrates. Journal of the Science of Food and Agriculture.In press.Google Scholar
Rubio, L. A. and Seiquer, I. 2002. Transport of amino acids from in vitro digested legume proteins or casein in Caco-2 cell cultures. Journal of Agricultural and Food Chemistry 50: 52025206.CrossRefGoogle ScholarPubMed
Salgad, P., Montagne, L., Freire, J. P. B., Ferreira, R. B., Teixeira, A., Bento, O., Abreu, M. C., Toullec, R. and Lallés, J. P. 2002. Legume grains enhance ileal losses of specifi c endogenous serine-protease proteins in weaned pigs. Journal of Nutrition 132: 19131920.CrossRefGoogle Scholar
Santoro, L. G., Grant, G. and Pusztai, A. 1997. Effects of shortterm feeding of rats with a highly purifi ed phaseolin preparation. Plant Foods for Human Nutrition 51: 6170.CrossRefGoogle Scholar
Santoro, L. G., Grant, G. and Pusztai, A. 1998. Degradation of glycoprotein II (phaseolin), the major storage protein of Phaseolus vulgaris seeds. In Recent advances of research in antinutritional factors in legume seeds (ed. Huisman, J., van der Poel, A. F. B. and Liener, I), pp. 363367. Wageningen, The Netherlands.Google Scholar
Schulze, H., Leeuwen, P. van, Verstegen, M. W. A., Huisman, J., Souffrant, W. B. and Ahrens, F. 1994. Effect of level of dietary neutral detergent fi bre on ileal apparent digestibility and ileal nitrogen losses in pigs. Journal of Animal Science 72: 23622368.CrossRefGoogle Scholar
Schulze, H., Savelkoul, F. H. M. G., Verstegen, M. W. A., Poel, A. F. B. van der, Tamminga, S. and Nibbelink, S. G. 1997. Nutritional evaluation of biologically treated white kidney beans ( Ph. vulgaris L.) in pigs: ileal and amino acid digestibility. Journal of Animal Science 75: 31853194.CrossRefGoogle ScholarPubMed
Schwingel, W. R. and Bates, D. B. 1996. Use of sodium dodecyl sulfate polyacrylamide gel electrophoresis to measure degradation of soluble soybean proteins by Prevotella ruminicola GA33 or mixed ruminal microbes in vitro. Journal of Animal Science 74: 475482.CrossRefGoogle ScholarPubMed
Seabra, M., Carvalho, S., Freire, J., Ferreira, R., Mourato, M., Cunha, L., Cabral, F., Teixeira, A. and Aumaitre, A. 2001. Lupinus luteus, Vicia sativa and Lathyrus cicera as protein sources for piglets: ileal and total tract apparent digestibility of amino acids and antigenic effects. Animal Feed Science and Technology 89: 116.CrossRefGoogle Scholar
Selvendran, R. R., Stevens, B. J. H. and Du Pont, M. S. 1987. Dietary fi ber: chemistry, analysis and properties. Advances in Food Research 31: 107119.Google Scholar
Sissons, J. W. 1989. Aetiology of diarrhoea in pigs and pre-ruminant calves. In Recent advances in animal nutrition (ed. Haresign, W., and Cole, D. J. A.), pp. 261282. Butterworths, London.CrossRefGoogle Scholar
Williams, B. A., Verstegen, M. W. A. and Tamminga, S. 2001. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutrition Research Reviews 14: 207227.CrossRefGoogle ScholarPubMed
Wolever, T. M. S. and Mehling, C. 2002. High-carbohydrate-lowglycaemic index dietary advice improves glucose disposition index in subjects with impaired glucose tolerance. British Journal of Nutrition 87: 477487.CrossRefGoogle ScholarPubMed