Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T17:05:08.287Z Has data issue: false hasContentIssue false

Meat and carcass quality of heavy muscled Belgian slaughter pigs as influenced by halothane sensitivity and breed

Published online by Cambridge University Press:  02 September 2010

S. de Smet
Affiliation:
Department of Animal Production, Faculty of Agricultural and Applied Biological Science, University of Gent, Proefhoevestraat 10, 9090 Melle, Belgium
H. Pauwels
Affiliation:
Ministry of Agriculture, Van Thorenburglaan 14, 9860 Schelderwindeke, Belgium
I. Vervaeke
Affiliation:
Department of Animal Production, Faculty of Agricultural and Applied Biological Science, University of Gent, Proefhoevestraat 10, 9090 Melle, Belgium
D. Demeyer
Affiliation:
Department of Animal Production, Faculty of Agricultural and Applied Biological Science, University of Gent, Proefhoevestraat 10, 9090 Melle, Belgium
S. de Bie
Affiliation:
Lokerse Vleesveiling cuba, Oude Bruglaan 53, 9160 Lokeren, Belgium
W. Eeckhout
Affiliation:
National Institute of Animal Nutrition, Scheldeweg 68, 9090 Gontrode, Belgium
M. Casteels
Affiliation:
National Institute of Animal Nutrition, Scheldeweg 68, 9090 Gontrode, Belgium
Get access

Abstract

In order to investigate the antagonism between meat quantity and quality, halothane-positive (HP) and -negative (HN) Belgian Landrace pigs (B) and Pietrain × Belgian Landrace crosses (PB) were compared for several carcass and meat quality traits. They originated from three commercial farms and were slaughtered in a commercial abattoir. Carcass quality was determined by a SKGlI-device. Meat quality traits were measured on the warm and cold carcass, and on a loin slice. HP and PB pigs showed better carcass quality, and inferior meat quality, compared with HN and B pigs respectively. No significant halothane sensitivity × breed interaction was apparent for most traits. Sex did not affect meat quality. Slaughter day variance was considerable. The inverse relationship between lean content or conformation score and meat quality was generally more pronounced in the HP group compared to the HN group (except for drip and cooking losses). Irrespective of halothane status, carcass conformational score was more negatively related to meat quality than was lean content.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Casteels, M. 1989. Objectieve karkasbeoordeling binnen de E. G. Verhandelingen van de Faculteit Landbouwwetenschappen te Gent 27:3855.Google Scholar
Eeckhout, W., Casteels, M. and Bekaert, H. 1966. Studie van de intrinsieke kwaliteit van varkensvlees. Mededeling n' 141 Rijksstation voor Veevoeding.Google Scholar
Eikelenboom, G. and Minkema, D. 1974. Prediction of pale, soft, exudative muscle with a non-lethal test for the halothane-induced porcine malignant hyperthermia syndrome. Tijdschrift voor Diergeneeskunde 99:421426.Google Scholar
Fewson, D. von, Rathfelder, A. and Muller, E. 1993. Untersuchungen über die Beziehungen von Fleischanteil, Fleischbeschaffenheit und Streβresistenz bei verschiedenen Schweineherkunften. 1. Mitteilung: Bedeutung der Morphologie des M. Longissimus dorsi. Ziichtungskunde 65:284296.Google Scholar
Guise, H. J. and Penny, R. H. C. 1989. Factors influencing the welfare and carcass and meat quality of pigs. 1. The effects of stocking density in transport and the use of electric goads. Animal Production 49:511515.Google Scholar
Hart, P. C. 1962. Fysisch-chemische kenmerken van gedegenereerd vlees bij varkens, II. Tijdschrift Diergeneeskunde 87:156167.Google Scholar
Honikel, K. O. 1987. How to measure the water-holding capacity of meat? Recommendation of standardized methods. In Evaluation and control of meat quality in pigs (ed. Tarrant, P. V., Eikelenboom, G., Monin, G.), pp. 129142. Martinus Nijhoff, Dordrecht.CrossRefGoogle Scholar
Jensen, P. and Barton-Gade, P. A. 1985. Performance and carcass characteristics of pigs with known halothane genotypes for halothane susceptibility. In Stress susceptibility and meat quality in pigs (ed. Ludvigsen, J. B.), European Association for Animal Production, publication, no.33, pp.8087.Google Scholar
Kallweit, E. 1985. Selection for stress resistance in pigs in various European countries. In Stress susceptibility and meat quality in pigs (ed. Ludvigsen, J. B.), European Association for Animal Production, publication, no. 33, pp.6067.Google Scholar
Lampo, P. 1981. Stressgevoeligheid bij het Belgisch landvarken. Het verband tussen de Halothane-anaesthesietest, vetmestings- en karkaskenmerken. Landbouwtijdschrift 34:213219.Google Scholar
Lampo, P., Nauwynck, W., Bouquet, Y. and Zeveren, A. van. 1985. Effect of stress susceptibility on some reproductive traits in Belgian Landrace pigs. Livestock Production Science 13:279287.CrossRefGoogle Scholar
Lundström, K., Essen-Gustavsson, B., Rundgren, M., Edfors-Lilja, I. and Malmfors, G. 1989. Effect of halothane genotype on muscle metabolism at slaughter and its relationship with meat quality: a within-litter comparison. Meat Science 25:251263.CrossRefGoogle ScholarPubMed
Monin, G., Sellier, P., Ollivier, L., Goutefongea, R. and Girard, J. P. 1981. Carcass characteristics and meat quality of halothane negative and halothane positive Pietrain pigs. Meat Science 5:413423.CrossRefGoogle ScholarPubMed
Murray, A. C., Jones, S. D. M. and Sather, A. P. 1989. The effect of preslaughter feed restriction and genotype for stress susceptibility on pork lean quality and composition. Canadian Journal of Animal Science 69:8391.CrossRefGoogle Scholar
Oliver, M. A., Gispert, M. and Diestre, A. 1993. The effects of breed and halothane sensitivity on pig meat quality. Meat Science 35:105118.CrossRefGoogle ScholarPubMed
Ollivier, L., Sellier, P. and Monin, G. 1978. Frequence du syndrome d'hyperthermie maligne dans des populations porcines franchises; relation avec le développement musculaire. Annales Génétique Sélection Animale 10:191208.CrossRefGoogle Scholar
Pauwels, H. and Moermans, R. 1986. De waarde en de betekenis van het aangevuld handelsklassement bij varkens. landbouwtijdschrift 39:723740.Google Scholar
Sather, A. P., Martin, A. H. and Fredeen, H. T. 1981. Meat 33, quality in pigs selected for lean tissue growth rate. In Porcine stress and meat quality (ed. Froystein, T., Slinde, E. and Standal, N.), pp. 274282. Agricultural Food Research Society, Ås, Norway.Google Scholar
Sellier, P. 1988. Aspects génétiques des qualités technologiques et organoleptiques de la viande chez le pore, Journées Recherche Porcine en France 20:227242.Google Scholar
Sellier, P., Monin, G., Talmant, A., Jacquet, B. and Runavot, J. P. 1988. Influence de la sensibilité à l'halothane et du pH ultime sur la qualité de la viande dans trois races porcines. Journées Recherche Porcine en France 20:243248.Google Scholar
Statistical Analysis Systems Institute. 1991. SAS-STAT user's guide: GLM-procedure. SAS Institute Inc., Cary, NC.Google Scholar
Touraille, C. and Monin, G. 1984. Comparaison des qualites organoleptiques de la viande de pores de trois races. Journées Recherche Porcine en France 16:7580.Google Scholar
Wai, P. G. van der 1993. Oorzaken van variatie in varkensvleeskwaliteit. Een literatuurstudie. IVO-DLO Rapport B-392.Google Scholar
Webb, A. J. and Jordan, C. H. C. 1978. Halothane sensitivity as a field test for stress-susceptibility in the pig. Animal Production 26:157168.Google Scholar
Webb, A. J. 1981. The halothane sensitivity test. In Porcine stress and meat quality (ed. Frφystein, T., Slinde, E. and Standal, N.), pp. 105124. Agricultural Food Research Society, As, Norway.Google Scholar
Viaene, J. and Craene, A. de 1991. Marketing of pigmeat. Proceedings TI-KV1V international congress on pig farming, Brussels, pp.6.16.7Google Scholar