Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T17:00:00.935Z Has data issue: false hasContentIssue false

Protein value for ruminants of a sample of whole cottonseed

Published online by Cambridge University Press:  09 March 2007

J. González*
Affiliation:
Departamento de Producción Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040, Madrid, Spain
J. Faría-Mármol
Affiliation:
Departamento de Producción Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040, Madrid, Spain
C.A. Rodríguez
Affiliation:
Departamento de Producción Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040, Madrid, Spain
M. Ouarti
Affiliation:
Departamento de Producción Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040, Madrid, Spain
M.R. Alvir
Affiliation:
Departamento de Producción Animal, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040, Madrid, Spain
C. Centeno
Affiliation:
Consejo Superior de Investigaciones Científicas, Instituto de Nutrición y Bromatología, 28040, Madrid, Spain
Get access

Abstract

The effective ruminal degradability (ED) of dry matter (DM), crude protein (CP) and amino acids, and the effective intestinal digestibility (IED) of DM and CP of a sample of whole cottonseed was measured using in situ and rumen outflow rate techniques in three wethers cannulated in the rumen and duodenum. The microbial contamination of rumen incubated residues was corrected by a continuous rumen infusion of 15NH3 as microbial marker and rumen solid associated bacteria as reference sample. Microbial contamination resulted in an overestimation of the undegradable fraction of DM (0·291 v. 0·275; P<0·05) and CP (0·071 v. 0·037; P<0·01) and a small underestimation of ED of DM (0·500 v. 0·512; P=0·09) and CP (0·755 v. 0·779; P=0·052). A proportion of 0·1 of the ruminal undegraded CP was of microbial origin and for essential amino acids this proportion varied from 0·042 to 0·150. Differences in ED between amino acids modified the amino acid profile, with an important reduction (0·2; P<0·01) in the proportion of lysine. Apparent intestinal digestibility of the insoluble fraction of this food, measured with the mobile nylon bag technique, showed large reductions (P<0·001) with the increase of the ruminal incubation time between 0 and 72 h: from 0·392 to 0·026 for DM and from 0·851 to 0·099 for CP. These evolutions fitted an exponential function with a previous lag. The IED was estimated either by integration of these equations and those describing the ruminal degradation and rumen outflow or by incubation through the intestines of a sample pooled to be representative of rumen flow of the undegraded food. The two methods gave similar values for both DM (0·222 v. 0·203) and CP (0·659 v. 0·658).

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agricultural and Food Research Council. 1992. Nutritive requirements of ruminant animals: protein. AFRC Technical Committee on Responses to Nutrients: report no. 9. Nutrition Abstracts and Reviews (series B) 62: 787835.Google Scholar
Akin, D. E., Burdick, D. and Michaels, G. E. 1974. Rumen bacterial interrelationships with plant tissue during degradation revealed by transmission electron microscopy. Applied Microbiology 27: 11491156.Google Scholar
Arieli, A. 1998. Whole cottonseed in dairy cattle feeding: a review. Animal Feed Science and Technology 72: 97110.CrossRefGoogle Scholar
Association of Official Analytical Chemists. 2000. Official methods of analysis (17th edition). Association of Official Analytical Chemists, Washington, DC.Google Scholar
Coppok, C. E., Lanham, J. K. and Horner, J. I. 1987. A review of the nutritive value and utilization of whole cottonseed, cottonseed meal and associated by-products by dairy cattle. Animal Feed Science and Technology 18: 80129.Google Scholar
Crooker, B. A., Clark, J. H., Shanks, R. D., Fahey, G. C. Jr 1987. Effects of ruminal exposure on the amino acid profile of feeds. Canadian Journal of Animal Science 67: 11431148.CrossRefGoogle Scholar
Degussa. 1996. The amino acid composition of feedstuffs (fourth edition). Degussa Feed Additives, NJ.Google Scholar
Dhanoa, M. S., Siddons, R. C., France, J. and Gale, L. 1985. A multicompartmental model to describe marker excretion patterns in ruminant faeces. British Journal of Nutrition 53: 663671.Google Scholar
Erasmus, L. J., Botha, P. M. and Cruywagen, C. W. 1994. Amino acid profile and intestinal digestibility in dairy cows of rumen-undegradable protein from various feedstuffs. Journal of Dairy Science 77: 541551.CrossRefGoogle ScholarPubMed
Faría-Mármol, J., González, J., Rodríguez, C. A. and Alvir, M. R. 2002. Effect of diet forage to concentrate ratio on rumen degradability and post-ruminal availability of protein from fresh and dried lucerne. Animal Science 74: 337345.Google Scholar
González, J., Faría-Mármol, J., Matesanz, B., Rodríguez, C. and Alvir, M. R. 2003. In situ intestinal digestibility of dry matter and crude protein of cereal grains and rapeseed in sheep. Reproduction, Nutrition, Development 43: 2940.Google Scholar
González, J., Faría-Mármol, J., Rodríguez, C. A. and Alvir, M. R. 2001. Effects of stage of harvest on the protein value for ruminants of fresh lucerne. Reproduction, Nutrition, Development 41: 381392.Google Scholar
González, J., Rodríguez, C. A., Andrés, S. G. and Alvir, M. R. 1998. Rumen degradability and microbial contamination of fish meal and meat meal measured by the in situ technique. Animal Feed Science and Technology 73: 7184.Google Scholar
González, J., Sánchez, L. and Alvir, M. R. 1999. Estimation of intestinal digestibility of undegraded sunflower meal protein from nylon bag measurements: a mathematical model. Reproduction, Nutrition, Development 39: 607616.Google Scholar
Martin, C., Bernard, L., Michalet-Doreau, B. 1996. Influence of sampling time and diet on amino acid composition of protozoal and bacterial fractions from bovine ruminal contents. Journal of Animal Science 74: 11571163.CrossRefGoogle ScholarPubMed
National Research Council. 2001. Nutrient requirements of dairy cattle, seventh revised edition. National Academy Press, Washington DC.Google Scholar
Ørskov, E. R. and McDonald, I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science, Cambridge 92: 499503.Google Scholar
Robertson, J. B. and Van Soest, P. J. 1981. The detergent system of analysis and its application to human foods. In The analysis of dietary fibre in food (ed. James, W. P. T. and Theander, O.), pp. 123158. Marcel Dekker, New York.Google Scholar
Rodríguez, C. A., González, J., Alvir, M. R. and Cajarville, C. 1999a. Underestimation of in situ effective degradability of N due to microbial contamination. In Protein metabolism and nutrition. Book of abstracts of the eighth international symposium on protein metabolism and nutrition (ed. Lobley, G. E., White, A. and MacRae, J. C.), p. 67. Wageningen Pers, Wageningen.Google Scholar
Rodríguez, C. A., González, J., Alvir, M. R. and Repetto, J. L. 1999b. Microbial nitrogen contamination of in sacco ruminal incubated feeds. In Protein metabolism and nutrition. Book of abstracts of the eighth international symposium on protein metabolism and nutrition (ed. Lobley, G. E., White, A. and MacRae, J. C.), p. 68. Wageningen Pers, Wageningen.Google Scholar
Rodríguez, C. A., González, J., Alvir, M. R., Centeno, C. and Lamrani, F. 2000. Composition of bacteria harvested from the liquid and solid fractions of the rumen of sheep as influenced by intake level. British Journal of Nutrition 84: 369376.Google Scholar
Sauvant, D., Perez, J. M. and Tran, G. 2002. Tables de composition et de valeur nutritive des matie `res premie `res destinées aux animaux d'élevage. INRA Editions, Paris.Google Scholar
Statistical Analysis Systems Institute. 1998. SAS for Windows software, version 6.12. SAS Institute Inc., Cary, NC.Google Scholar
Susmel, P., Stefanon, B., Mills, C. R. and Candido, M. 1989. Change in amino acid composition of different protein sources after rumen incubation. Animal Production 49: 375383.Google Scholar
Van Soest, P. J., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 35833597.Google Scholar
Van Straalen, W. M., Odinga, J. J. and Mostert, W. 1997. Digestion of feed amino acids in the rumen and small intestine of dairy cows measured with nylon bag techniques. British Journal of Nutrition 77: 8397.Google Scholar
Voigt, J., Piatkowski, B., Engelmann, H. and Rudolph, E. 1985. Measurement of the postruminal digestibility of crude protein by the bag technique in cows. Archiv für Tierernährung 35: 555562.Google Scholar
Wadhwa, M., Makkar, G. S. and Ichhponani, J. S. 1993. Disappearance of protein supplements and their fractions in sacco. Animal Feed Science and Technology 40: 285293.CrossRefGoogle Scholar
Webster, A. J. F., Kitcherside, M. A., Keirby, J. R. and Hall, P. A. 1984. Evaluation of protein feeds for dairy cows Animal Production 38: 548 (abstr.)Google Scholar
Weisbjerg, M. R., Hvelplund, T., Hellberg, S., Olsson, S. and Sanne, S. 1996. Effective rumen degradability and intestinal digestibility of individual amino acids in different concentrates determined in situ. Animal Feed Science and Technology 62: 179188.CrossRefGoogle Scholar