Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T07:07:47.707Z Has data issue: false hasContentIssue false

Evidence for additional functional genetic variation within the porcine IGF2 gene affecting body composition traits in an experimental Piétrain × Large White/Landrace cross

Published online by Cambridge University Press:  15 December 2010

T. J. Boysen*
Affiliation:
Institute for Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, D-24098 Kiel, Germany
J. Tetens
Affiliation:
Institute for Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, D-24098 Kiel, Germany
G. Thaller
Affiliation:
Institute for Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, D-24098 Kiel, Germany
Get access

Abstract

The aim of this study was to test for the existence of causative genetic variation affecting body composition traits within or adjacent to the porcine insulin-like growth factor 2 (IGF2) gene beyond the known IGF2-intron3-G3072A mutation. A focussed quantitative trait loci analysis using four microsatellite markers within the telomeric region of porcine chromosome 2p was conducted in a large resource population comprising 2741 F2 offspring. The analysis of two subsets of animals that were alternatively homozygous for the in3G3072A mutation provides evidence for additional genetic variation significantly contributing to the overall quantitative trait nucleotide variance within our population.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

These authors contributed equally.

References

Alexander, LJ, Troyer, DL, Rohrer, GA, Smith, TPL, Schook, LB, Beattie, CW 1996. Physical assignment of 68 porcine cosmid and lambda clones containing polymorphic microsatellites. Mammalian Genome 7, 368372.CrossRefGoogle ScholarPubMed
Borchers, N, Reinsch, N, Kalm, E 2000. Familial cases of coat colour-change in a Pietrain cross. Journal of Animal Breeding and Genetics 117, 285287.Google Scholar
Borchers, N, Reinsch, N, Kalm, E 2002. Teat number, hairiness and set of ears in a Piétrain cross: variation and effects on performance traits. Archiv für Tierzucht Dummerstorf 45, 465480.Google Scholar
Borchers, N, Reinsch, N, Kalm, E 2004. The number of ribs and vertebrae in a Piétrain cross: variation, heritability and effects on performance traits. Journal of Animal Breeding and Genetics 121, 392403.CrossRefGoogle Scholar
Churchill, GA, Doerge, RW 1994. Empirical threshold values for quantitative trait mapping. Genetics 138, 963971.CrossRefGoogle ScholarPubMed
De Koning, DJ, Rattink, AP, Harlizius, B, van Arendonk, JAM, Brascamp, EW, Groenen, MAM 2000. Genome-wide scan for body composition in pigs reveales important role of imprinting. Proceedings of the National Academy of Sciences of the United States of America 97, 79477950.CrossRefGoogle Scholar
Haley, CS, Knott, SA 1992. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69, 315324.CrossRefGoogle ScholarPubMed
Jeon, JT, Carlborg, Ö, Törnsten, A, Giuffra, E, Amarger, V, Chardon, P, Andersen-Eklund, L, Andersson, K, Hansson, I, Lundström, K, Andersson, L 1999. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pig maps to the IGF2 locus. Nature Genetics 21, 157158.CrossRefGoogle Scholar
Jungerius, BJ, van Laere, AS, Te Pas, MF, van Oost, BA, Andersson, L, Groenen, MA 2004. The IGF2-intron3-G3072A substitution explains a major imprinted QTL effect on backfat thickness in a Meishan × European white pig intercross. Genetics Research 842, 95101.CrossRefGoogle Scholar
Knoll, A, Putnová, L, Dvořák, J, Čepica, S 2000. A NciI PCR-RFLP within intron 2 of the porcine insulin-like growth factor 2 IGF2 gene. Animal Genetics 31, 150151.CrossRefGoogle ScholarPubMed
Knott, SA, Marklund, L, Haley, CS, Andersson, K, Davies, W, Ellegren, H, Fredholm, M, Hansson, I, Hoyheim, B, Lundström, K, Moller, M, Andersson, L 1998. Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics 149, 10691080.CrossRefGoogle Scholar
Kühn, C, Thaller, G, Winter, A, Bininda-Emonds, OR, Kaupe, B, Erhardt, G, Bennewitz, J, Schwerin, M, Fries, R 2004. Evidence for multiple alleles at the DGAT1 locus better explains a quantitative trait locus with major effect on milk fat content in cattle. Genetics 167, 18731881.CrossRefGoogle ScholarPubMed
Markljung, E, Jiang, L, Jaffe, JD, Mikkelsen, TS, Wallerman, O, Larhammar, M, Zhang, X, Wang, L, Saenz-Vash, V, Gnirke, A, Lindroth, AM, Barrés, R, Yan, J, Strömberg, S, De, S, Pontén, F, Lander, ES, Carr, SA, Zierath, JR, Kullander, K, Wadelius, C, Lindblad-Toh, K, Andersson, G, Hjälm, G, Andersson, L 2009. ZBED6, a novel transcription factor derived from a domesticated DNA transposon regulates IGF2 expression and muscle growth. PLoS Biology 7, e1000256.CrossRefGoogle ScholarPubMed
Nezer, C, Moreau, L, Brouwers, B, Coppieters, W, Detillieux, J, Hanset, R, Karim, L, Kvasz, A, Leroy, P, Georges, M 1999. An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nature Genetics 21, 155156.CrossRefGoogle Scholar
Rohrer, GA, Alexander, LJ, Keele, JW, Smith, TP, Beattie, CW 1994. A microsatellite linkage map of the porcine genome. Genetics 136, 231245.CrossRefGoogle ScholarPubMed
Rohrer, GA, Alexander, LJ, Hu, Z, Smith, TPL, Kele, JW, Beattie, CW 1996. A comprehensive map of the porcine genome. Mammalian Genome 6, 371391.Google ScholarPubMed
Seaton, G, Hernandez, J, Grunchec, JA, White, I, Allen, J, De Koning, DJ, Wei, W, Berry, D, Haley, C, Knott, S 2006. GridQTL: a grid portal for QTL mapping of compute intensive datasets. In Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, August 13–18, 2006, Belo Horizonte, Brazil.Google Scholar
Stinckens, A, Mathur, P, Janssens, S, Bruggeman, V, Onagbesan, OM, Schroyen, M, Spincemaille, G, Decuypere, E, Georges, M, Buys, N 2010. Indirect effect of IGF2 intron3 g.3072G>A mutation on prolificacy in sows. Animal Genetics 41, 493498.CrossRefGoogle ScholarPubMed
Thomsen, H, Lee, HK, Rothschild, MF, Malek, M, Dekkers, JCM 2004. Characterization of quantitative trait loci for growth and meat quality in a cross between commercial breeds of swine. Journal of Animal Science 82, 22132228.CrossRefGoogle Scholar
Van Laere, A-S, Nguyen, M, Braunschweig, M, Nezer, C, Collette, C, Moreau, L, Archibald, AL, Haley, CS, Buys, N, Tally, M, Andersson, G, Georges, M, Andersson, L 2003. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425, 832836.CrossRefGoogle Scholar
Vykoukalová, Z, Knoll, A, Dvorák, J, Čepica, S 2006. New SNPs in the IGF2 gene and association between this gene and backfat thickness and lean meat content in Large White pigs. Journal of Animal Breeding and Genetics 123, 204207.CrossRefGoogle ScholarPubMed
Wigginton, JE, Abecasis, GR 2005. PEDSTATS: descriptive statistics, graphics and quality assessment for gene mapping data. Bioinformatics 2116, 34453447.CrossRefGoogle Scholar