Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T08:18:06.342Z Has data issue: false hasContentIssue false

An integrated closed system for fish-plankton aquaculture in Amazonian fresh water

Published online by Cambridge University Press:  22 May 2014

S. Gilles*
Affiliation:
Laboratoire Mixte International – Evolution et Domestication de l’Ichtyofaune Amazonienne Institut de Recherche pour le Développement (IRD), UMR 226 ISE-M, Institut des Sciences de l’Evolution de Montpellier, Université de Montpellier II, 34095 Montpellier, France Instituto de Investigaciones de la Amazonia Peruana (IIAP), apartado postal 185, Iquitos, Peru
R. Ismiño
Affiliation:
Laboratoire Mixte International – Evolution et Domestication de l’Ichtyofaune Amazonienne Instituto de Investigaciones de la Amazonia Peruana (IIAP), apartado postal 185, Iquitos, Peru
H. Sánchez
Affiliation:
Laboratoire Mixte International – Evolution et Domestication de l’Ichtyofaune Amazonienne Instituto de Investigaciones de la Amazonia Peruana (IIAP), apartado postal 185, Iquitos, Peru
F. David
Affiliation:
Ecole Nationale Supérieure Agronomique de Toulouse (ENSAT), 31326 Castanet Tolosan, France
J. Núñez
Affiliation:
Laboratoire Mixte International – Evolution et Domestication de l’Ichtyofaune Amazonienne Institut de Recherche pour le Développement (IRD), UMR 226 ISE-M, Institut des Sciences de l’Evolution de Montpellier, Université de Montpellier II, 34095 Montpellier, France
R. Dugué
Affiliation:
Laboratoire Mixte International – Evolution et Domestication de l’Ichtyofaune Amazonienne Institut de Recherche pour le Développement (IRD), UMR 226 ISE-M, Institut des Sciences de l’Evolution de Montpellier, Université de Montpellier II, 34095 Montpellier, France
M. J. Darias
Affiliation:
Laboratoire Mixte International – Evolution et Domestication de l’Ichtyofaune Amazonienne Institut de Recherche pour le Développement (IRD), UMR 226 ISE-M, Institut des Sciences de l’Evolution de Montpellier, Université de Montpellier II, 34095 Montpellier, France Instituto de Investigaciones de la Amazonia Peruana (IIAP), apartado postal 185, Iquitos, Peru
U. Römer
Affiliation:
Laboratoire Mixte International – Evolution et Domestication de l’Ichtyofaune Amazonienne Animal Research Group, Institute of Biogeography (UTIB), University of Trier, Department of Geo-Sciences, Universitätsstraße 15, 54286 Trier, Germany Linteler Straße 19, 33334 Gütersloh, Germany
*
Get access

Abstract

A prototype of an integrated closed system for fish-plankton aquaculture was developed in Iquitos (Peruvian Amazonia) in order to cultivate the Tiger Catfish, Pseudoplatystoma punctifer (Castelnau, 1855). This freshwater recirculating system consisted of two linked sewage tanks with an intensive rearing unit (a cage) for P. punctifer placed in the first, and with a fish-plankton trophic chain replacing the filters commonly used in clear water closed systems. Detritivorous and zooplanktivorous fishes (Loricariidae and Cichlidae), maintained without external feeding in the sewage volume, mineralized organic matter and permitted the stabilization of the phytoplankton biomass. Water exchange and organic waste discharge were not necessary. In this paper we describe the processes undertaken to equilibrate this ecosystem: first the elimination of an un-adapted spiny alga, Golenkinia sp., whose proliferation was favored by the presence of a small rotifer, Trichocerca sp., and second the control of this rotifer proliferation via the introduction of two cichlid species, Acaronia nassa Heckel, 1840 and Satanoperca jurupari Heckel, 1840, in the sewage part. This favored some development of the green algae Nannochloris sp. and Chlorella sp. At that time we took the opportunity to begin a 3-month rearing test of P. punctifer. The mean specific growth rate and feed conversion ratio (FCR) of P. punctifer were 1.43 and 1.27, respectively, and the global FCR, including fish in the sewage part, was 1.08. This system has proven to be suitable for growing P. punctifer juveniles out to adult, and provides several practical advantages compared with traditional recirculating clear water systems, which use a combination of mechanical and biological filters and require periodic waste removal, leading to water and organic matter losses.

Type
Research Article
Copyright
© The Animal Consortium 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, PR, Harper, JK, Wade, EW, Takeda, F and Summerfelt, ST 2000. Economic analysis of an aquaponic system for the integrated production of rainbow trout and plants. International Journal of Recirculating Aquaculture 1, 1534.Google Scholar
Beveridge, MCM, Phillips, MJ and Clarke, RM 1991. A quantitative and qualitative assessment of wastes from aquatic animal production. In Aquaculture and water quality. Advances in world aquaculture, vol. 3 (ed. DE Brune and JR Tomaso), pp. 506527. World Aquaculture Society, Baton Rouge, USA.Google Scholar
Bicudo, AJA, Borghesi, R, Dairiki, JK, Sado, RY and Cyrino, JEP 2012. Performances of juveniles of Pseudoplatystoma fasciatum fed graded levels of corn gluten meal. Pesquisa Agropecuaria Brasileira 47, 838845.Google Scholar
Brinkmann, WLF and Dos Santos, A 1973. Natural waters in Amazonia. VI – soluble calcium properties. Acta Amazonica 3, 3340.Google Scholar
Brown, JJ, Glenn, EP, Fitzsimmons, KM and Smith, SE 1999. Halophytes for the treatment of saline aquaculture effluent. Aquaculture 175, 255268.Google Scholar
Brune, DE, Reed, S, Schwartz, G and Collier, J 2001. High rate algal systems for aquaculture. AES Issues Forum 81110.Google Scholar
Brune, DE, Schwartz, G, Eversole, AG, Collier, JA and Schewedler, TE 2003. Intensification of pond aquaculture and high rate photosynthetic systems. Aquacultural Engineering 28, 6586.Google Scholar
Buitrago-Suarez, UA and Burr, BM 2007. Taxonomy of the catfish genus Pseudoplatystoma Bleeker (Siluriformes: Pimelodidae) with recognition of eight species. Zootaxa 1512, 138.CrossRefGoogle Scholar
Chin, KK, Ong, SL and Foo, SC 1993. A water treatment and recycling system for intensive fish farming. Water Science and Technology 27, 141148.Google Scholar
Corpron, KE and Armstrong, DA 1983. Removal of nitrogen by an aquatic plant, Elodea densa, in recirculating Macrobrachium culture systems. Aquaculture 32, 347360.Google Scholar
Culley, DD, Rejmankova, E, Kvet, J and Frye, JB 1981. Production, chemical quality and use of duckweeds (Lemnaceae) in aquaculture, waste management, and animal feeds. Journal of the World Mariculture Society 12, 2749.Google Scholar
Diab, S, Kochba, M, Mires, D and Avnimelech, Y 1992. Combined intensive-extensive (CIE) pond system. Part A: inorganic nitrogen transformations. Aquaculture 101, 3339.Google Scholar
Drapcho, CM and Brune, DE 2000. The partitioned aquaculture system: impact of design and environmental parameters on algal productivity and photosynthetic oxygen production. Aquacultural Engineering 21, 151168.CrossRefGoogle Scholar
Evers, H-G and Seidel, I 2005. Catfish Atlas. South American Catfishes of the families Loricariidae, Cetopsidae, Nematogenyidae and Trichomycteridae, vol. 1. Mergus Verlag, Melle, Germany.Google Scholar
Falk, TM, Teugels, GG and Abban, EK 2000. Genetic characterization of West African populations of Sarotherodon melanotheron (Teleostei, Cichlidae). In Biodiversity and sustainable use of fish in the coastal zone (ed. EK Abban, CMV Casal, TM Falk and RSV Pullin), pp. 811. Manila, ICLARM Conference Proceedings 63, 71pp.Google Scholar
Fisch-Muller, S 2003. Loricariidae: Subfamily Ancistrinae (Armored catfishes). In Checklist of the freshwater fishes of South and Central America (ed. RE Reis, SO Kullander and CJ Ferraris Jr), pp. 373400. EDIPUCRS, Porto Alegre, Brazil.Google Scholar
García-Dávila, G, Duponchelle, F, Castro-Ruiz, D, Villacorta, J, Quérouil, S, Chota-Macuyama, W, Núñez, J, Römer, U, Carvajal-Vallejos, F and Renno, J-F 2013. Molecular identification of a cryptic species in the Amazonian predatory catfish genus Pseudoplatystoma (Bleeker, 1962) from Peru. Genetica 141, 347358.Google Scholar
Gilles, S, Lacroix, G, Corbin, D, , N, Ibañez Luna, C, Nandjui, J, Ouattara, A, Oue Draogo, O and Lazzaro, X 2008. Mutualism between euryhaline tilapia Sarotherodon melanotheron heudelotii and Chlorella sp. – implications for nano-algal production in warm water phytoplankton-based recirculating systems. Aquacultural Engineering 39, 113121.Google Scholar
Gilles, S, Fargier, L, Lazzaro, X, Baras, E, De Wilde, N, Drakidès, C, Amiel, C, Rispal, B and Blancheton, JP 2013. An integrated fish-plankton aquaculture system in brackish water. Animal 7, 322329.Google Scholar
Goulding, M, Leal Carvallo, M and Ferreira, EG 1988. Rio Negro, rich life in poor water. SPB Publishing, The Hague, Netherlands.Google Scholar
Hargreaves, JA 2006. Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering 34, 344363.Google Scholar
Hussenot, J, Lefebvre, S and Brossard, N 1998. Open-air treatment of wastewater from land-based marine fish farms in extensive and intensive systems: current technology and future perspectives. Aquatic Living Resources 11, 297304.Google Scholar
King, DL 1970. The role of carbon in eutrophication. Journal of the Water Pollution Control Federation 42, 20352051.Google Scholar
Laurance, WF, Sayer, J and Cassman, KG 2014. Agricultural expansion and its impacts on tropical nature. Trends in Ecology and Evolution 1776, 110.Google Scholar
Lewis, WM, Yop, JH, Schramm, HL Jr and Brandenburg, AM 1978. Use of hydroponics to maintain quality of recirculated water in a fish culture system. Transactions of the American Fisheries Society 107, 9299.Google Scholar
Li, G, Wu, ZB, Cheng, SP, Liang, W, He, F, Fu, GP and Zhong, F 2007. Application of constructed wetlands on wastewater treatment for aquaculture ponds. Wuhan University Journal of Natural Sciences 12, 11311135.CrossRefGoogle Scholar
Liao, IC and Chen, TP 1983. Status and prospects of tilapia culture in Taiwan. In Proceedings of the International Symposium on Tilapia in Aquaculture (ed. L Fishelson and Z Yaron), pp. 588598. Tel Aviv University Press, Tel Aviv, Israel.Google Scholar
Lin, YF, Jing, SR and Lee, DY 2003. The potential use of constructed wetlands in a recirculating aquaculture system for shrimp culture. Environmental Pollution 123, 107113.Google Scholar
Lucanus, O 2009. The Amazon below water. Panta Rhei, Hannover, Germany.Google Scholar
Makarevičienė, V, Andrulevičiūtė, V, Skorupskaitė, V and Kasperovičienė, J 2011. Cultivation of microalgae Chlorella sp. and Scenedesmus sp. as a potentional biofuel feedstock. Environmental Research, Engineering and Management 3, 2127.Google Scholar
Martins, CIM, Eding, EH, Verdegem, MCJ, Heinsbroek, LTN, Schneider, O, Blancheton, JP, Roque d’Orbcastel, E and Verreth, JAJ 2010. New developments in recirculating aquaculture systems in Europe: a perspective on environmental sustainability. Aquacultural Engineering 43, 8393.Google Scholar
Mires, D and Amit, Y 1992. Intensive culture of tilapia in quasi-closed water-cycled flow-through ponds – the Dekel aquaculture system. Bamidgeh 44, 8286.Google Scholar
Mires, D, Amit, Y, Avnimelech, Y, Diab, S and Cochaba, M 1990. Water quality in a recycled intensive fish culture system under field conditions. Bamidgeh 42, 110121.Google Scholar
Moquet, JS, Crave, A, Viers, J, Seyler, P, Armijos, E, Bourrel, L, Chavarri, E, Lagane, C, Laraque, A, Lavado Casimiro, SW, Pombosa, R, Noriega, L, Vera, A and Guyot, JL 2011. Chemical weathering and atmospheric/soil CO2 uptake in the Andean and Foreland Amazon basins. Chemical Geology 287, 126.Google Scholar
Naegel, LCA 1977. Combining production of fish and plants in recirculation water. Aquaculture 10, 1724.Google Scholar
Neori, A, Chopin, T, Troell, M, Buschmann, AH, Kraemer, GP, Halling, C, Shpigel, M and Yarish, C 2004. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231, 361391.Google Scholar
Nuñez, J, Dugué, R, Corcuy Arana, N, Duponchelle, F, Renno, J-F, Raynaud, T, Hubert, N and Legendre, M 2008. Induced breeding and larval rearing of Surubí, Pseudoplatystoma fasciatum (Linnaeus, 1766), from the Bolivian Amazon. Aquaculture Research 39, 764776.Google Scholar
Nuñez, J, Castro, D, Fernandez, C, Dugué, R, Chu-Koo, F, Duponchelle, F, García, C and Renno, J-F 2011. Hatching rate and larval growth variations in Pseudoplatystoma punctifer: maternal and paternal effects. Aquaculture Research 42, 764775.Google Scholar
Pauly, D 1976. The biology, fishery and potential for aquaculture of Tilapia melanotheron in a small West African lagoon. Aquaculture 7, 3349.Google Scholar
Pipes, WO and Koutsoyannis, SP 1961. Light-limited growth of Chlorella in continuous cultures. Applied Microbiology 10, 15.Google Scholar
Rakocy, JE 1999a. Aquaculture engineering: the status of aquaponics: part 1. Aquaculture Magazine, July/August, 8388.Google Scholar
Rakocy, JE 1999b. Aquaculture engineering: the status of aquaponics: part 2. Aquaculture Magazine, September/October, 6470.Google Scholar
Römer, U 2000. Cichlid Atlas 1: natural history of neotropical dwarf cichlids, vol. 1. Mergus Verlag, Melle, Germany.Google Scholar
Römer, U 2006. Cichlid Atlas 2: natural history of South American dwarf cichlids, vol. 2. Mergus Verlag, Melle, Germany.Google Scholar
Schulz, C, Gelbrecht, J and Rennert, B 2003. Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow. Aquaculture 217, 207221.Google Scholar
Schwartz, M and Boyd, C 1995. Constructed wetlands for treatment of channel catfish pond effluents. Progressive Fish Culturist 57, 255266.Google Scholar
Seawright, DE, Stickney, RR and Walker, RB 1998. Nutrient dynamics in integrated aquaculture: hydroponics systems. Aquaculture 160, 215237.Google Scholar
Seidel, I and Evers, H-G 2005. Wels Atlas. Band 2, Hypostominen, Lithogeneinen und Neoplecostominen. Mergus Verlag, Melle, Germany.Google Scholar
Sevrin-Reyssac, J 1997. L’instabilité du phytoplankton et le phénomène des eaux claires dans les étangs de pisciculture. Environmental and Experimental Botany 38, 211221.Google Scholar
Shnel, N, Barak, Y, Ezer, T, Dafni, Z and van Rijn, J 2002. Design and performance of a zero-discharge tilapia recirculating system. Aquacultural Engineering 26, 191203.Google Scholar
Small, BC 2006. Improvements in channel catfish growth after two generations of selection and comparison of performance traits among channel catfish, blue catfish, and hybrid catfish fingerlings in an aquarium rack system. Publications from USD-ARS/UNL Faculty, Paper 595. Retrieved 13 December 2013 from http://digitalcommons.unl.edu/usdaarsfacpub/595 Google Scholar
Stawikowski, R and Werner, U 1987. Neue Erkenntnisse über die Buntbarsche um Theraps lentiginosus mit der Beschreibung von Theraps coeruleus . Aquarien und Terrarien Zeitschrift 40, 499504.Google Scholar
Stawikowski, R and Werner, U 1998. Die Buntbarsche Amerikas. Volume 1: Ulmer. Stuttgart, Germany.Google Scholar
Stawikowski, R and Werner, U 2004. Die Buntbarsche Amerikas. Volume 3: Erdfresser, Hecht- und Kammbuntbarsche. Ulmer, Stuttgart, Germany.Google Scholar
Tilley, DR, Badrinarayanan, H, Rosati, R and Son, J 2002. Constructed wetlands as recirculation filters in large-scale shrimp aquaculture. Aquacultural Engineering 26, 81109.Google Scholar
Trewavas, E 1983. Tilapiine fishes of the genera Sarotherodon, Oreochromis and Danakilia . British Museum (Natural History), London, UK.Google Scholar
Turker, H, Eversole, AG and Brune, DE 2003. Filtration of green algae and cyanobacteria by Nile tilapia, Oreochromis niloticus, in the partitioned aquaculture system. Aquaculture 215, 93101.Google Scholar
Wayne, S 1985. The basketmouth cichlid: Acaronia nassa (Heckel 1840). Freshwater and Marine Aquarium Magazine (November) 5263.Google Scholar
Weidner, T 2000. South American Eartheaters. Cichlid Press, El Paso, Texas USA.Google Scholar
Witt, U, Koske, PH, Kuhlmann, D, Lenz, J and Nellen, W 1981. Production of Nannochloris sp. (Chlorophyceae) in large-scale outdoor tanks and its use as a food organism in marine aquaculture. Aquaculture 23, 171181.Google Scholar
Zachritz, WH II, Hanson, AT, Sauceda, JA and Fitzsimmons, KM 2008. Evaluation of submerged surface flow (SSF) constructed wetlands for recirculating tilapia production systems. Aquacultural Engineering 39, 1623.Google Scholar
Zhang, SY, Li, G, Wu, HB, Liu, XG, Yao, YH, Tao, L and Liu, H 2011. An integrated recirculating aquaculture system (RAS) for land-based fish farming: the effects on water quality and fish production. Aquacultural Engineering 45, 93102.Google Scholar