Published online by Cambridge University Press: 16 October 2018
Tail damage within the production of finisher pigs is an animal welfare problem. Recent research suggests that removal of known risk factors may not be enough to eliminate tail biting, especially in undocked pigs, thus a different strategy is worth investigating. This could be early detection of tail biting, using behavioural changes observed before tail damage. If these early stages of tail biting can be detected before tail damage occurs, then tail damage could be prevented by early interventions. The first step in developing such a strategy is to identify the types of behaviour changes that emerge during early stages of tail biting. Thus, the aim of the current study was to investigate whether pen level activity and object manipulation evolved differently during the last 7 days before the scoring of tail damage (day 0) for pens scored with tail damage (tail damage pens) and pens not scored with tail damage (matched control pens). The study included video recordings for twenty-four tail damage pens and thirty-two matched control pens. Activity level and object manipulation were observed the last 7 days before day 0 during the morning (0600 to 0800 h), afternoon (1600 to 1800 h) and evening (2200 to 2400 h, only activity level). Both activity level and object manipulation were analysed using generalised linear mixed effects models with a binomial distribution for activity level and a negative binomial distribution for object manipulation. The probability of being active was higher in tail damage pens compared to control pens during the afternoon the last 5 days before day 0 (P<0.001). This was seen due to a decrease in activity level in the control pens, which makes it difficult to identify future tail damage pens from this difference. Object manipulation was lower in tail damage pens compared to the control pens on all 7 days before day 0, but only in pens with undocked pigs (P<0.01). Thus, it is still unknown when this difference in object manipulation initiated. It was concluded that both activity level and object manipulation seemed related to ongoing tail biting and should be investigated through more detailed observations and for a longer time to establish the normal behaviour pattern for a particular pen. Thus, it is suggested that future research focusses on developing automatic monitoring methods for pen level activity and object manipulation and applies algorithms that establish and detect deviations from the normal behaviour pattern of the pen before tail damage.