Published online by Cambridge University Press: 01 July 2008
In a population of 268 yearling bulls, those carcasses graded as U−, U0 or U+ for beef carcass conformation (n = 240) and those graded as 2−, 20 or 2+ for beef carcass fatness (n = 213) were selected to study the efficiency of carcass weight, carcass dimensions and instrumental colour of latissimus dorsi, rectusabdominis and subcutaneous fat, to discriminate among these carcass grades, in a population of high-muscled and very lean carcasses from young bulls. The increase in conformation grade meant an increase in carcass weight and perimeter of the leg. Classifiers use attributes characterizing muscular development and carcass profiles from a general impression of the whole carcass. There were no significant differences for carcass weight or carcass dimensions, among the carcasses classified according to the three fat classes. The a* and b* coordinate values for the latissimus dorsi muscle were observed to decrease significantly as the carcass conformation score increased (P < 0.05). However, muscle and subcutaneous fat of fatter carcasses showed higher a*, b* colour coordinates and chroma (C*) values than leaner carcasses. The CIE (Commission International de l’Éclairage) L*, a* and b* colour coordinate measurements taken on the carcasses 45 min post mortem varied significantly from the readings taken after hanging for 24 h (P < 0,001). The higher a* and b* values on the carcasses chilled for 24 h could be caused by oxygenation of both subcutaneous fat, and latissimusdorsi and rectusabdominis muscles in the time elapsing after slaughter and after carcass exposition to circulating air in the cooler for 24 h. Lightness of the latissimus dorsi muscle underwent a decrease, compared with an increase in the rectusabdominis muscle. Hardening of the subcutaneous fat during cold storage may exert an influence on the decrease in lightness observed. These differences in carcass colour during chilling storage would suggest that the relationship between carcass colour and conformation grades was higher shortly after slaughter. Both L* colour coordinate of fat colour (P < 0.01) and a*, b* and C* colour coordinates of latissimus dorsi muscle (P < 0.05) were related to conformation classification. Colour was more efficient to differentiate conformation than fat cover classes. Sixty-two percent of carcasses were correctly classified for conformation by colour differences but only 37% of carcasses were correctly classified for fatness by colour.