Published online by Cambridge University Press: 29 September 2011
Previous studies have indicated that 15N enrichment of solid-associated bacteria (SAB) may be predicted from the same value in liquid-associated bacteria (LAB). The aims of this study were to confirm this and to measure the error in the nutrient supply from SAB, when LAB are used as the reference sample. For this purpose, the chemical and amino acid (AA) compositions of both the bacterial populations were studied in four experiments carried out on different groups of three rumen cannulated wethers. Diets (one in Experiments 1 and 4 and three in Experiments 2 and 3) had forage-to-concentrate ratios (dry matter (DM) basis) between 2 : 1 and 40 : 60, and were consumed at intake levels between 40 and 75 g DM/kg (BW)0.75. The bacteria samples were isolated after continuous infusion of (15NH4)2SO4 (40, 18, 30 and 25 mg 15N/day, in Experiments 1 to 4, respectively) for at least 14 days. In all experiments, SAB had consistently higher concentrations of organic matter (826 v. 716 g/kg DM, as average) and total lipids (192 v. 95 g/kg DM, as average) than LAB. Similar CP concentrations of both populations were observed, except a higher concentration in SAB than in LAB in Experiment 3. A consistent (in Experiment 4 only as tendency) higher AA-N/total N ratio (on average 17.5%) was observed in SAB than in LAB. The 15N enrichment in SAB was systematically lower than in LAB. On the basis of the results of all studies a close relationship was found between the 15N enrichment in SAB and LAB, which was shown irrespective of experiments. This relationship was established from Experiments 1 and 2 and the above cited previous results (n = 20; P < 0.001; R2 = 0.996), and then confirmed from the results of Experiments 3 and 4. These relationships between SAB and LAB demonstrate that CP supply from SAB is underevaluated by, on average, 21.2% when LAB are used as the reference. This underevaluation was higher for true protein and even higher for the lipid supply (32.5% and 59.6%, respectively, as an average of the four experiments). Large differences in AA profile were observed between SAB and LAB. The prediction equation obtained using 15N as the marker may be used to correct the errors associated with the traditional use of LAB as the reference sample, and therefore to obtain more accurate estimates of the microbial nutrient supply to the ruminants.