Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T06:35:07.706Z Has data issue: false hasContentIssue false

Dietary protein modulates digestive enzyme activities and gene expression in red tilapia juveniles

Published online by Cambridge University Press:  26 March 2020

W. M. Santos*
Affiliation:
Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Laboratório de Aquacultura, Avenida Antônio Carlos, nº 6627, CEP 31270-901Belo Horizonte, Minas Gerais, Brasil
L. S. Costa
Affiliation:
Departamento de Zootecnia, Universidade Federal do Espírito Santo, Alto Universitário, S/N Guararema, CEP 29500-000Alegre, Espírito Santo, Brasil
J. F. López-Olmeda
Affiliation:
Departamento de Fisiología, Universidad de Murcia, Facultad de Biología, Avda. Teniente Flomesta, nº 5, CEP 30003Murcia, España
N. C. S. Costa
Affiliation:
Departamento de Zootecnia, Universidade Federal de Lavras, Laboratório de Enzimologia, Av. Sul UFLA – Aquenta Sol, CEP 37200-000Lavras, Minas Gerais, Brasil
F. A. C. Santos
Affiliation:
Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Laboratório de Aquacultura, Avenida Antônio Carlos, nº 6627, CEP 31270-901Belo Horizonte, Minas Gerais, Brasil
C. G. Oliveira
Affiliation:
Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Laboratório de Aquacultura, Avenida Antônio Carlos, nº 6627, CEP 31270-901Belo Horizonte, Minas Gerais, Brasil
H. O. Guilherme
Affiliation:
Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Laboratório de Aquacultura, Avenida Antônio Carlos, nº 6627, CEP 31270-901Belo Horizonte, Minas Gerais, Brasil
R. N. Bahiense
Affiliation:
Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Laboratório de Aquacultura, Avenida Antônio Carlos, nº 6627, CEP 31270-901Belo Horizonte, Minas Gerais, Brasil
R. K. Luz
Affiliation:
Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Laboratório de Aquacultura, Avenida Antônio Carlos, nº 6627, CEP 31270-901Belo Horizonte, Minas Gerais, Brasil
P. A. P. Ribeiro
Affiliation:
Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Laboratório de Aquacultura, Avenida Antônio Carlos, nº 6627, CEP 31270-901Belo Horizonte, Minas Gerais, Brasil
*
Get access

Abstract

It is known that the level of dietary protein modulates the enzymatic activity of the digestive tract of fish; however, its effect at the molecular level on these enzymes and the hormones regulating appetite has not been well characterised. The objective of this study was to evaluate the effect of CP on the activity of proteases and the expression of genes related to the ingestion and protein digestion of juveniles of red tilapia (Oreochromis sp.), as well as the effects on performance, protein retention and body composition of tilapia. A total of 240 juveniles (29.32 ± 5.19 g) were used, distributed across 20 tanks of 100 l in a closed recirculation system. The fish were fed to apparent satiety for 42 days using four isoenergetic diets with different CP levels (24%, 30%, 36% and 42%). The results indicate that fish fed the 30% CP diet exhibited a higher growth performance compared to those on the 42% CP diet (P < 0.05). Feed intake in fish fed 24% and 30% CP diets was significantly higher than that in fish fed 36% and 42% CP diets (P < 0.05). A significant elevation of protein retention was observed in fish fed with 24% and 30% CP diets. Fish fed with 24% CP exhibited a significant increase in lipid deposition in the whole body. The diet with 42% CP was associated with the highest expression of pepsinogen and the lowest activity of acid protease (P < 0.05). The expression of hepatopancreatic trypsinogen increased as CP levels in the diet increased (P < 0.05) up to 36%, whereas trypsin activity showed a significant reduction with 42% CP (P < 0.05). The diet with 42% CP was associated with the lowest intestinal chymotrypsinogen expression and the lowest chymotrypsin activity (P < 0.05). α-amylase expression decreased with increasing (P < 0.05) CP levels up to 36%. No significant differences were observed in the expression of procarboxypeptidase, lipase or leptin among all the groups (P > 0.05). In addition, the diet with 42% CP resulted in a decrease (P < 0.05) in the expression of ghrelin and insulin and an increase (P < 0.05) in the expression of cholecystokinin and peptide yy. It is concluded that variation in dietary protein promoted changes in the metabolism of the red tilapia, which was reflected in proteolytic activity and expression of digestion and appetite-regulating genes.

Type
Research Article
Copyright
© The Animal Consortium 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Association of Official Analytical Chemists 2012. Official methods of analysis, 19th edition. AOAC, Arlington, VA, USA.Google Scholar
Babaei, S, Sáez, A, Caballero-Solares, A, Fernández, F, Baanante, IV and Metón, I 2017. Effect of dietary macronutrients on the expression of cholecystokinin, leptin, ghrelin and neuropeptide Y in gilthead sea bream (Sparus aurata). General and Comparative Endocrinology 240, 121128.10.1016/j.ygcen.2016.10.003CrossRefGoogle Scholar
Blanco, AM, Bertucci, JI, Delgado, MJ, Valenciano, AI and Unniappan, S 2016. Tissue-specific expression of ghrelinergic and NUCB2/nesfatin-1 systems in goldfish (Carassius auratus) is modulated by macronutrient composition of diets. Comparative Biochemistry and Physiology A 195, 19.10.1016/j.cbpa.2016.01.016CrossRefGoogle ScholarPubMed
Bradford, MM 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.10.1016/0003-2697(76)90527-3CrossRefGoogle ScholarPubMed
Chen, Y-J, Wang, X-Y, Pi, R-R, Feng, J-Y, Luo, L, Lin, S-M and Wang, D-S 2018. Preproinsulin expression, insulin release, and hepatic glucose metabolism after a glucose load in the omnivorous GIFT tilapia Oreochromis niloticus. Aquaculture 482, 183192.10.1016/j.aquaculture.2017.10.001CrossRefGoogle Scholar
Costa, LS, Serrano, I, Sánchez-Vázquez, FJ and López-Olmeda, JF 2016. Circadian rhythms of clock gene expression in Nile tilapia (Oreochromis niloticus) central and peripheral tissues: influence of different lighting and feeding conditions. Journal of Comparative Physiology B 186, 775785.10.1007/s00360-016-0989-xCrossRefGoogle ScholarPubMed
Enes, P, Panserat, S, Kaushik, S and Oliva-Teles, A 2009. Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiology and Biochemistry 35, 519539.10.1007/s10695-008-9259-5CrossRefGoogle ScholarPubMed
García-Meilán, I, Ordóñez-Grande, B, Machahua, C, Buenestado, S, Fontanillas, R and Gallardo, MA 2016. Effects of dietary protein-to-lipid ratio on digestive and absorptive processes in sea bass fingerlings. Aquaculture 463, 163173.10.1016/j.aquaculture.2016.05.039CrossRefGoogle Scholar
Gawlicka, AK and Horn, MH 2006. Trypsin gene expression by quantitative insitu hybridization in carnivorous and herbivorous prickleback fishes (Teleostei: stichaeidae): ontogenetic, dietary, and phylogenetic effects. Physiological and Biochemical Zoology 79, 120132.10.1086/498289CrossRefGoogle Scholar
Gomez, G, Han, S, Englander, EW and Greeley, GH Jr 2012. Influence of a long-term high-fat diet on ghrelin secretion and ghrelin-induced food intake in rats. Regulatory Peptides 173, 6063.10.1016/j.regpep.2011.09.006CrossRefGoogle ScholarPubMed
Gong, N, Jönsson, E and Björnsson, BT 2016. Acute anorexigenic action of leptin in rainbow trout is mediated by the hypothalamic Pi3k pathway. Journal of Molecular Endocrinology 56, 227238.10.1530/JME-15-0279CrossRefGoogle ScholarPubMed
Hrytsenko, O, Wright, JR Jr and Pohajdak, B 2008. Regulation of insulin gene expression and insulin production in Nile tilapia (Oreochromis niloticus). General and Comparative Endocrinology 155, 328340.10.1016/j.ygcen.2007.05.006CrossRefGoogle Scholar
Huang, YS, Wen, XB, Li, SK, Xuan, XZ and Zhu, DS 2017. Effects of protein levels on growth, feed utilization, body composition, amino acid composition and physiology indices of juvenile chuʼs croaker, Nibea coibor. Aquaculture Nutrition 23, 594602.10.1111/anu.12426CrossRefGoogle Scholar
Jin, Y, Tian, L, Xie, S, Guo, D, Yang, H, Liang, G and Liu, Y 2015. Interactions between dietary protein levels, growth performance, feed utilization, gene expression and metabolic products in juvenile grass carp (Ctenopharyngodon idella). Aquaculture 437, 7583.10.1016/j.aquaculture.2014.11.031CrossRefGoogle Scholar
Kortner, TM, Overrein, I, Øie, G, Kjørsvik, E and Arukwe, A 2011. The influence of dietary constituents on the molecular ontogeny of digestive capability and effects on growth and appetite in Atlantic cod larvae (Gadus morhua). Aquaculture 315, 114120.10.1016/j.aquaculture.2010.04.008CrossRefGoogle Scholar
Ma, R, Liu, X, Meng, Y, Wu, J, Zhang, L, Han, B, Qian, K, Luo, Z, Wei, Y and Li, C 2019. Protein nutrition on sub-adult triploid rainbow trout (1): dietary requirement and effect on anti-oxidative capacity, protein digestion and absorption. Aquaculture 507, 428434.10.1016/j.aquaculture.2019.03.069CrossRefGoogle Scholar
Micale, V, Campo, S, D’Ascola, A, Guerrera, MC, Levanti, MB, Germanà, A and Muglia, U 2014. Cholecystokinin: how many functions? Observations in seabreams. General and Comparative Endocrinology 205, 166167.10.1016/j.ygcen.2014.02.019CrossRefGoogle ScholarPubMed
Mommsen, TP, Moon, TW and Plisetskaya, EM 2001. Effects of arginine on pancreatic hormones and hepatic metabolism in rainbow trout. Physiological and Biochemical Zoology 74, 668678.10.1086/322924CrossRefGoogle ScholarPubMed
Morais, S, Cahu, C, Zambonino-Lnfante, JL, Robin, J, Rønnestad, I, Dinis, MT and Conceição, LE 2004. Dietary TAG source and level affect performance and lipase expression in larval sea bass (Dicentrarchus labrax). Lipids 39, 449458.10.1007/s11745-004-1250-2CrossRefGoogle Scholar
Morrison, CM, Miyake, T and Wright, JR Jr 2001. Histological study of the development of the embryo and early larva of Oreochromis niloticus (Pisces: Cichlidae). Journal of Morphology 247, 172195.3.0.CO;2-H>CrossRefGoogle Scholar
Morrison, CM, Pohajdak, B, Tam, J and Wright, JR Jr 2004. Development of the islets, exocrine pancreas, and related ducts in the Nile Tilapia, Oreochromis niloticus (Pisces: Cichlidae). Journal of Morphology 261, 377389.10.1002/jmor.10256CrossRefGoogle Scholar
National Research Council 2011. Nutrient requirements of fish and shrimp. National Academy Press, Washington, DC, USA.Google Scholar
Pérez-Jiménez, A, Cardenete, G, Morales, AE, García-Alcázar, A, Abellán, E and Hidalgo, MC 2009. Digestive enzymatic profile of Dentex dentex and response to different dietary formulations. Comparative Biochemistry and Physiology A 154, 157164.CrossRefGoogle ScholarPubMed
Pradeep, PJ, Srijaya, TC, Hassan, A, Chatterji, AK, Withyachumnarnkul, B and Jeffs, A 2014. Optimal conditions for cold-shock induction of triploidy in red tilapia. Aquaculture International 22, 11631174.10.1007/s10499-013-9736-4CrossRefGoogle Scholar
Psochiou, E, Sarropoulou, E, Mamuris, Z and Moutou, KA 2007. Sequence analysis and tissue expression pattern of Sparus aurata chymotrypsinogens and trypsinogen. Comparative Biochemistry and Physiology B 147, 367377.10.1016/j.cbpb.2007.01.020CrossRefGoogle ScholarPubMed
Tinoco, AB, Nisembaum, LG, Isorna, E, Delgado, MJ and de Pedro, N 2012. Leptins and leptin receptor expression in the goldfish (Carassius auratus). Regulation by food intake and fasting/overfeeding conditions. Peptides 34, 329335.CrossRefGoogle Scholar
Tu, Y, Xie, S, Han, D, Yang, Y, Jin, J, Liu, H and Zhu, X 2015. Growth performance, digestive enzyme, transaminase and GH-IGF-I axis gene responsiveness to different dietary protein levels in broodstock allogenogynetic gibel carp (Carassius auratus gibelio) CAS III. Aquaculture 446, 290297.CrossRefGoogle Scholar
Unniappan, S, Lin, X, Cervini, L, Rivier, J, Kaiya, H, Kangawa, K and Peter, RE 2002. Goldfish ghrelin: molecular characterization of the complementary deoxyribonucleic acid, partial gene structure and evidence for its stimulatory role in food intake. Endocrinology 143, 41434146.CrossRefGoogle ScholarPubMed
Untergasser, A, Cutcutache, I, Koressaar, T, Ye, J, Faircloth, BC, Remm, M and Rozen, SG 2012. Primer3-new capabilities and interfaces. Nucleic Acids Research 40, 112.10.1093/nar/gks596CrossRefGoogle ScholarPubMed
Volkoff, H 2016. The neuroendocrine regulation of food intake in fish: a review of current knowledge. Frontiers in Neuroscience 10, 131.10.3389/fnins.2016.00540CrossRefGoogle ScholarPubMed
Volkoff, H, Hoskins, LJ and Tuziak, SM 2010. Influence of intrinsic signals and environmental cues on the endocrine control of feeding in fish: potential application in aquaculture. General and Comparative Endocrinology 167, 352359.10.1016/j.ygcen.2009.09.001CrossRefGoogle ScholarPubMed
Wang, C, Xie, S, Zhu, X, Lei, W, Yang, Y and Liu, J 2006. Effects of age and dietary protein level on digestive enzyme activity and gene expression of Pelteobagrus fulvidraco larvae. Aquaculture 254, 554562.CrossRefGoogle Scholar
Wang, X, Ni, S, Xu, Y, Liang, L, Du, L and Gu, W 2012. Effects of long-term high-fat/high-energy and high-protein diets on insulin and ghrelin expression in developing rats. Endocrine Research 37, 97109.10.3109/07435800.2011.635621CrossRefGoogle ScholarPubMed
Xiong, Y, Huang, J, Li, X, Zhou, L, Dong, F, Ye, H and Gan, L 2014. Deep sequencing of the tilapia (Oreochromis niloticus) liver transcriptome response to dietary protein to starch ratio. Aquaculture 433, 299306.10.1016/j.aquaculture.2014.06.009CrossRefGoogle Scholar
Yang, H, Morrison, CM, Conlon, JM, Laybolt, K and Wright, JR Jr 1999. Immunocytochemical characterization of the pancreatic islet cells of the Nile tilapia (Oreochromis niloticus). General and Comparative Endocrinology 114, 4756.CrossRefGoogle Scholar