Published online by Cambridge University Press: 23 August 2010
Bacitracin is an antibiotic used in rabbit husbandry to control microbial digestive pathologies. Collateral effects on absorption and mucosal development have been reported and these may impact on protein metabolism. This study aims to analyse the effect of the antibiotic on protein synthesis in lactating does because mammary gland metabolism and milk output should provide a sensitive index of any undesirable action of bacitracin. Rates of protein synthesis were measured in mammary gland, liver, intestinal mucosa and muscle of lactating rabbits does by injecting a flooding dose of [2H5]phenylalanine into the auricular artery of two groups (each n = 8) of New Zealand White does fed different experimental diets. The control group (C) received the basal diet and the bacitracin group (B) ingested the same diet but supplemented with bacitracin (100 mg/kg). Animals received the experimental diet from day 28 of pregnancy until day 26 of lactation when they were slaughtered. Just after birth, litter size was adjusted by cross-fostering either to five or nine pups (four does per dietary treatment). The relative weight of the liver tended to be greater in those females receiving the B diet (27 v. 22.5 g/kg BW; P < 0.07), while diet did not affect mammary gland weight (255.7 ± 10.59 g). Fractional protein synthesis rate (FSR) was higher for intestinal mucosa (duodenum; 51.7% ± 2.09%/day) followed by mammary gland and liver (38.29 ± 2.62%/day and 40.2 ± 1.98%/day, respectively), and the lowest value was observed in muscle (2.92 ± 0.26%/day; P < 0.0001). Bacitracin treatment lowered FSR in the mammary gland by 23% (P = 0.024) and this was independent of litter size. Conversely, FSR in the duodenum was not affected by antibiotic treatment but reduced by 15% (P = 0.021) for the larger litter size.