Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T07:12:19.344Z Has data issue: false hasContentIssue false

Environmental and genetic variation factors of artificial insemination success in French dairy sheep

Published online by Cambridge University Press:  01 July 2008

I. David
Affiliation:
INRA UR631, Station d’Amélioration Génétique des Animaux, 31320 Castanet-Tolosan, France
C. Robert-Granié
Affiliation:
INRA UR631, Station d’Amélioration Génétique des Animaux, 31320 Castanet-Tolosan, France
E. Manfredi
Affiliation:
INRA UR631, Station d’Amélioration Génétique des Animaux, 31320 Castanet-Tolosan, France
G. Lagriffoul
Affiliation:
Institut de l’Elevage – ANIO, BP 42118, 31321 Castanet-Tolosan Cedex, France
L. Bodin*
Affiliation:
INRA UR631, Station d’Amélioration Génétique des Animaux, 31320 Castanet-Tolosan, France
Get access

Abstract

Artificial inseminations (n = 678 168) recorded during 5 years in five French artificial insemination (AI) centres (2 ‘Lacaune’, 1 ‘Manech tête rousse’, 1 ‘Manech tête noire’ and 1 ‘Basco béarnaise’) were analysed to determine environmental and genetic factors affecting the insemination results. Analyses within centre-breed were performed using a linear model, which jointly estimates male and female fertility. This model combined four categories of data: the environmental effects related to the female, those related to the male, the non-sex-specific effects and finally the pedigree data of these males and females. After selection, the environmental female effects considered were age, synchronisation (0/1) on the previous year, total number of synchronisations during the female reproductive life, time interval between previous lambing and insemination, already dry or still lactating (0/1) when inseminated, and milk quantity produced during the previous year expressed as quartiles intra herd * year. The environmental male effects were motility and concentration of the semen. The non-sex-specific effects were the inseminator, the interaction herd * year nested within the inseminator, considered as random effects and the interaction year * season considered as a fixed effect. The main variation factors of AI success were relative to non-sex-specific effects and to female effects. Heritability estimates varied from 0.001 to 0.005 for male fertility and from 0.040 to 0.078 for female fertility. Repeatability estimates varied from 0.007 to 0.015 for male fertility and from 0.104 to 0.136 for female fertility. These parameters indicate that genetic improvement of AI results through a classical polygenic selection would be difficult. Moreover, in spite of the large quantity of variation factors fitted by the joint model, a very large residual variance remained unexplained.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anel, L, Kaabi, M, Abroug, B, Alvarez, M, Anel, E, Boixo, JC, de la Fuente, LF, de Paz, P 2005. Factors influencing the success of vaginal and laparoscopic artificial insemination in churra ewes: a field assay. Theriogenology 63, 12351247.CrossRefGoogle Scholar
Arranz JM, Lagriffoul G, Guérin Y and Chemineau P 1995. Control of sperm production in rams by light and melatonin treatments. Actes des 2èmes Rencontres autour des Recherches sur les Ruminants, Paris, France, 13–14 décembre 1995, pp. 425–428.Google Scholar
Averill, TA, Rekaya, R, Weigel, K 2004. Genetic analysis of male and female fertility using longitudinal binary data. Journal of Dairy Science 87, 39473952.CrossRefGoogle ScholarPubMed
Barbat A, Druet T, Bonaiti B, Guillaume F, Colleau JJ and Boichard D 2005. Bilan phénotypique de la fertilité à l’insémination artificielle dans les trois principales races laitières françaises. Actes des 12èmes Rencontres autour des Recherches sur les Ruminants, Paris, France, 7–8 décembre 2005, pp. 137–140.Google Scholar
Baril, G, Chemineau, P, Cognié, Y, Guérin, Y, Leboeuf, B, Orgeur, P, Vallet, JC 1993. Manuel de formation pour l’insémination artificielle chez les ovins et les caprins. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.Google Scholar
Boichard, D, Manfredi, E 1994. Genetic Analysis of Conception Rate in French Holstein Cattle. Acta Agriculturae Scandinavica: Section A, Animal Science 44, 138145.CrossRefGoogle Scholar
Boichard D, Barbat A and Briend M 1998. Evaluation génétique des caractères de fertilité femelle chez les bovins laitiers. Actes des 5èmes Rencontres autour des Recherches sur les Ruminants, Paris, France, 2–3 décembre 1998, pp. 103–106.Google Scholar
Briois M, Belloc JP, Guérin Y and Colas G 1988. L’Insémination artificielle dans le rayon de Roquefort. Proceedings of the 3rd World Congress on Sheep and Beef Cattle Breeding, Paris, France, 19–23 June 1988, pp. 183–185.Google Scholar
Chemineau P, Guérin Y, Delgadillo JA, Leboeuf B, Briois M, Belloc JP, Pezavent P and Pelletier J 1989. Traitements photopériodiques pour l’augmentation de la production spermatique. Mise en oeuvre pratique dans les centres d’insémination artificielle. Proceedings of the 40th Annual Meeting of the EAAP, Dublin, Ireland, pp. 85–86.Google Scholar
Chemineau, P, Cognié, Y, Guérin, Y, Orgeur, P, Vallet, JC 1991. Training manual on artificial insemination in sheep and goats. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy.Google Scholar
Cognié Y, Bodin L and Terqui M 1984. The control of the time of ovulation in relation to the use of artificial insemination. In Insémination artificielle et amélioration génétique: bilan et perspectives critiques. Toulouse-Auzeville, France, 23–24 novembre 1983 (ed. JM Elsen and JL Foulley), pp. 77–95. Institut National de la Recherche Agronomique, Paris, France.Google Scholar
Colas, G 1981. Variations saisonnières de la qualité du sperme chez le bélier Ile de France. 2. fécondance: relation avec les critères qualitatifs observes in vitro. Reproduction, Nutrition, Développement 21, 399407.CrossRefGoogle Scholar
Colas, G, Thimonier, J, Courot, M, Ortavant, R 1973. Fertilité, prolificité et fécondité pendant la saison sexuelle des brebis inséminées artificiellement après traitement à l’acétate de fluorogestone. Annales de Zootechnie 22, 441451.CrossRefGoogle Scholar
Colenbrander, B, Gadella, BM, Stout, TA 2003. The predictive value of semen analysis in the evaluation of stallion fertility. Reproduction in Domestic Animals 38, 305311.CrossRefGoogle ScholarPubMed
Correa, JR, Pace, MM, Zavos, PM 1997. Relationships among frozen-thawed sperm and characteristics assessed via the routine semen analysis, sperm functional tests and fertility of bulls in an artificial insemination program. Theriogenology 48, 721731.CrossRefGoogle Scholar
David I, Bodin L, Lagriffoul G, Leymarie C, Manfredi E and Robert-Granié C 2007a. Joint Genetic Analysis of Male and Female Fertility after AI in Sheep. Proceedings of the 58th Annual Meeting EAAP, Dublin, Ireland, p. 51.Google Scholar
David, I, Bodin, L, Lagriffoul, G, Leymarie, C, Manfredi, E, Robert-Granié, C 2007b. Genetic analysis of male and female fertility after AI in Sheep: Comparison of single trait and joint models. Journal of Dairy Science 90, 39173923.CrossRefGoogle ScholarPubMed
Donoghue, KA, Rekaya, R, Misztal, I 2004. Threshold-linear analysis of measures of fertility in artificial insemination data and days to calving in beef cattle. Journal of Animal Science 82, 987993.CrossRefGoogle ScholarPubMed
Duval P, Belloc JP, Albaret M, Girou P and Barillet F 1995. Study of factors affecting variation in sexual function of Lacaune dairy rams and fertility of inseminated ewes. Actes des 2èmes Rencontres autour des Recherches sur les Ruminants, Paris, France, 13–14 décembre 1995, pp. 429–434.Google Scholar
Gadea, J 2005. Sperm factors related to in vitro and in vivo porcine fertility. Theriogenology 63, 431444.CrossRefGoogle ScholarPubMed
Gilmour, AR, Gogel, BJ, Cullis, BR, Welham, SJ, Thompson, R 2002. ASReml User Guide, Release 1.0. VSN International Ltd, Hemel Hempstead, UK.Google Scholar
Grimard, B, Freret, S, Chevallier, A, Pinto, A, Ponsart, C, Humblot, P 2006. Genetic and environmental factors influencing first service conception rate and late embryonic/foetal mortality in low fertility dairy herds. Animal Reproduction Science 91, 3144.CrossRefGoogle ScholarPubMed
Hulet, CV, Foote, WC, Blackwell, RL 1965. Relationship of semen quality and fertility in the ram to fecundity in the ewe. Journal of Reproduction and Fertility 9, 311315.CrossRefGoogle Scholar
Linford, E, Glover, FA, Bishop, C, Stewart, DL 1976. The relationship between semen evaluation methods and fertility in the bull. Journal of Reproduction and Fertility 47, 283291.CrossRefGoogle ScholarPubMed
Matos, CAP, Thomas, DL, Gianola, D, Tempelman, RJ, Young, LD 1997. Genetic analysis of discrete reproductive traits in sheep using linear and nonlinear models .1. Estimation of genetic parameters. Journal of Animal Science 75, 7687.CrossRefGoogle ScholarPubMed
Meijering, A, Gianola, D 1985. Linear versus nonlinear methods of sire evaluation for categorical traits: A simulation study. Génétique, Sélection, Evolution 17, 115131.CrossRefGoogle ScholarPubMed
Perret, G, Lagriffoul, G 2006. Compte rendu annuel sur l’insémination artificielle ovine – Campagne 2005. Institut de l’Elevage, Paris, France.Google Scholar
Piles, M, Rafel, O, Ramon, J, Varona, L 2005. Genetic parameters of fertility in two lines of rabbits with different reproductive potential. Journal of Animal Science 83, 340343.CrossRefGoogle ScholarPubMed
Ramirez-Valverde, R, Misztal, I, Bertrand, JK 2001. Comparison of threshold vs linear and animal vs sire models for predicting direct and maternal genetic effects on calving difficulty in beef cattle. Journal of Animal Science 79, 333338.CrossRefGoogle ScholarPubMed
Ranberg, IMA, Heringstad, B, Klemetsdal, G, Svendsen, M, Steine, T 2003. Heifer fertility in Norwegian dairy cattle: Variance components and genetic change. Journal of Dairy Science 86, 27062714.CrossRefGoogle Scholar
Robinson, JAB, Buhr, MM 2005. Impact of genetic selection on management of boar replacement. Theriogenology 63, 668678.CrossRefGoogle ScholarPubMed
Roche, JR 2007. Associations among body condition score, body weight, and reproductive performance in seasonal-calving dairy cattle. Journal of Dairy Science 90, 376391.CrossRefGoogle ScholarPubMed
Salamon, S, Maxwell, WMC 1995. Frozen storage of ram semen I. Processing, freezing, thawing and fertility after cervical insemination. Animal Reproduction Science 37, 185249.CrossRefGoogle Scholar
Salamon, S, Maxwell, WMC 2000. Storage of ram semen. Animal Reproduction Science 62, 77111.CrossRefGoogle ScholarPubMed
SAS ® 1999. SAS/STAT Software, version 8. Statistical Analysis Systems Institute, Cary, NC, USA.Google Scholar
Varona, L, Noguera, JL 2001. Variance components of fertility in Spanish Landrace pigs. Livestock Production Science 67, 217221.CrossRefGoogle Scholar
Weller, JI, Ron, M 1992. Genetic-analysis of fertility traits in Israeli Holsteins by linear and threshold models. Journal of Dairy Science 75, 25412548.CrossRefGoogle ScholarPubMed