Article contents
Epidermal growth factor promotes intestinal secretory cell differentiation in weaning piglets via Wnt/β-catenin signalling
Published online by Cambridge University Press: 25 October 2019
Abstract
Small intestinal epithelium homeostasis involves four principal cell types: enterocytes, goblet, enteroendocrine and Paneth cells. Epidermal growth factor (EGF) has been shown to affect enterocyte differentiation. This study determined the effect of dietary EGF on goblet, enteroendocrine and Paneth cell differentiation in piglet small intestine and potential mechanisms. Forty-two weaned piglets were used in a 2 × 3 factorial design; the major factors were time post-weaning (days 7 and 14) and dietary treatment (0, 200 or 400 µg/kg EGF supplementation). The numbers of goblet and enteroendocrine cells were generally greater with the increase in time post-weaning. Moreover, the supplementation of 200 µg/kg EGF increased (P < 0.01) the number of goblet and enteroendocrine cells in villus and crypt of the piglet small intestine as compared with the control. Dietary supplementation with 200 µg/kg EGF enhanced (P < 0.05) abundances of differentiation-related genes atonal homologue 1, mucin 2 and intestinal trefoil factor 3 messenger RNA (mRNA) as compared with the control. Piglets fed 200 or 400 µg/kg EGF diet had increased (P < 0.05) abundances of growth factor-independent 1, SAM pointed domain containing ETS transcription factor and pancreatic and duodenal homeobox 1 mRNA, but decreased the abundance (P < 0.01) of E74 like ETS transcription factor 3 mRNA as compared with the control. Animals receiving 400 µg/kg EGF diets had enhanced (P < 0.05) abundances of neurogenin3 and SRY-box containing gene 9 mRNA as compared with the control. The mRNA abundance and protein expression of lysozyme, a marker of Paneth cell, were also increased (P < 0.05) in those animals. As compared with the control, dietary supplementation with 200 µg/kg EGF increased the abundance of EGF receptor mRNA and the ratio of non-phospho(p)-β-catenin/β-catenin (P < 0.05) in villus epithelial cells at days 7 and 14. This ratio in crypt epithelial cells was higher (P < 0.05) on the both 200 and 400 µg/kg EGF groups during the same period. Our results demonstrated that dietary EGF stimulated goblet, enteroendocrine and Paneth cell differentiation in piglets during the post-weaning period, partly through EGFR and Wnt/β-catenin signalling.
Keywords
- Type
- Research Article
- Information
- Copyright
- © The Animal Consortium 2019
References
- 19
- Cited by