Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T20:09:55.558Z Has data issue: false hasContentIssue false

Estimation of genetic trends from 1977 to 2000 for stress-responsive systems in French Large White and Landrace pig populations using frozen semen

Published online by Cambridge University Press:  12 August 2009

A. Foury
Affiliation:
Université Victor Segalen Bordeaux 2, PsyNuGen, INRA UMR1286, CNRS UMR5226, F-33076 Bordeaux, France
T. Tribout
Affiliation:
INRA UMR1313 Génétique Animale et Biologie Intégrative, F-78352 Jouy-en-Josas, France
C. Bazin
Affiliation:
IFIP, Pôle Génétique, F-35651 Le Rheu, France
Y. Billon
Affiliation:
INRA, UE967 Génétique Expérimentale en Productions Animales F-17700 Surgères, France
M. Bouffaud
Affiliation:
INRA, UE450 Testage de Porcs F35650 Le Rheu, France
J. M. Gogué
Affiliation:
INRA, UE332 Domaine Expérimental de Bourges, F-18300 Osmoy, France
J. P. Bidanel
Affiliation:
INRA UMR1313 Génétique Animale et Biologie Intégrative, F-78352 Jouy-en-Josas, France
P. Mormède*
Affiliation:
Université Victor Segalen Bordeaux 2, PsyNuGen, INRA UMR1286, CNRS UMR5226, F-33076 Bordeaux, France
Get access

Abstract

An experimental design aiming at analysing the consequences of genetic selection from 1977 to 1998–2000 on the evolution of stress-responsive systems in the French Large White (LW) and Landrace (LR) pig populations was conducted by INRA and IFIP-Institut du Porc. Large White sows were inseminated with semen from LW boars born in 1977 (frozen semen) or in 1998 and their second-generation offspring were station-tested. Landrace sows were inseminated with semen from LR boars born in 1977 (frozen semen) or in 1999 to 2000, and their progeny was station-tested. Urinary concentration of stress hormones (cortisol and catecholamines) and traits related to carcass composition (estimated carcass lean content (ECLC) and global adiposity) and meat quality (pH 24 h) were measured. For the two populations, selection carried out since 1977 led to an increase in ECLC and a decrease in carcass adiposity. Between 1977 and 1998 to 2000, urinary concentrations of stress hormones were unchanged in the LR breed, but were decreased in the LW breed. Moreover, for the animals generated from LW boars born in 1977 and in 1998, urinary cortisol levels were negatively correlated with ECLC. Therefore, in the LW breed, selection carried out for higher ECLC resulted in a decrease in cortisol production, as well as a reduction of catecholamine production that may be responsible for the lower ultimate pH of meat. Therefore, selection carried out for increased carcass lean content led, in this breed, to large modifications in the functioning of the stress-responsive systems, thereby influencing a large range of physiological regulations and technical properties such as carcass composition and meat pH, which remained however in the normal range for acceptable meat quality.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bazin, C, Tiger, E, Tribout, T, Bouffaud, M, Madigand, G, Boulard, J, Deschodt, G, Flého, J-Y, Gueblez, R, Maignel, L, Bidanel, JP 2003. Estimation, par utilisation de semence congelée en élevage de sélection, du progrès génétique réalisé entre 1977 et 2000 dans les races Large White et Landrace Français pour les caractères de croissance, de carcasse et de qualité de la viande. Journées de la Recherche Porcine en France 35, 277284.Google Scholar
Canario, L, Père, MC, Tribout, T, Thomas, F, David, C, Gogué, J, Herpin, P, Bidanel, JP, Le Dividich, J 2007a. Estimation of genetic trends from 1977 to 1998 of body composition and physiological state of Large White pigs at birth. Animal 1, 14091413.CrossRefGoogle ScholarPubMed
Canario, L, Rydhmer, L, Gogué, J, Tribout, T, Bidanel, JP 2007b. Estimation of genetic trends from 1977 to 1998 for farrowing characteristics in the French Large White breed using frozen semen. Animal 1, 929938.Google Scholar
Ciaranello, RD 1978. Regulation of phenylethanolamine N-methyltransferase. Biochemical Pharmacology 27, 18951897.CrossRefGoogle ScholarPubMed
Crockett, CM, Bowers, CL, Sackett, GP, Bowden, DM 1993. Urinary cortisol responses of longtailed macaques to 5 cage sizes, tethering, sedation, and room change. American Journal of Primatology 30, 5574.CrossRefGoogle Scholar
Dallman, MF, Strack, AM, Akana, SF, Bradbury, MJ, Hanson, ES, Scribner, KA, Smith, M 1993. Feast and famine: critical role of glucocorticoids with insulin in daily energy flow. Frontiers in Neuroendocrinology 14, 303347.CrossRefGoogle ScholarPubMed
Désautés, C, Bidanel, J, Milan, D, Iannuccelli, N, Amigues, Y, Bourgeois, F, Caritez, J, Renard, C, Chevalet, C, Mormède, P 2002. Genetic linkage mapping of quantitative trait loci for behavioral and neuroendocrine stress response traits in pigs. Journal of Animal Science 80, 22762285.Google ScholarPubMed
Devenport, L, Knehans, A, Sundstrom, A, Thomas, T 1989. Corticosterone’s dual metabolic actions. Life Sciences 45, 13891396.CrossRefGoogle ScholarPubMed
Fernandez, X, Tornberg, E 1991. A review of the causes of variation in muscle glycogen content and ultimate pH in pigs. Journal of Muscle Foods 2, 209235.CrossRefGoogle Scholar
Foury, A, Devillers, N, Sanchez, MP, Griffon, H, Le Roy, P, Mormède, P 2005. Stress hormones, carcass composition and meat quality in Large White × Duroc pigs. Meat Science 69, 703707.CrossRefGoogle Scholar
Foury, A, Geverink, N, Gil, M, Gispert, M, Hortos, M, Furnols, M, Carrion, D, Blott, S, Plastow, G, Mormède, P 2007. Stress neuroendocrine profiles in five pig breeding lines and the relationship with carcass composition. Animal 1, 973982.CrossRefGoogle ScholarPubMed
Hay, M, Mormède, P 1997a. Determination of catecholamines and methoxycatecholamines excretion patterns in pig and rat urine by ion-exchange liquid chromatography with electrochemical detection. Journal of Chromatography B 703, 1523.CrossRefGoogle ScholarPubMed
Hay, M, Mormède, P 1997b. Improved determination of urinary cortisol and cortisone, or corticosterone and 11-dehydrocorticosterone by high-performance liquid chromatography with ultraviolet absorbance detection. Journal of Chromatography B 702, 3339.CrossRefGoogle ScholarPubMed
Herpin, P, Dividich, J, Amaral, N 1993. Effect of selection for lean tissue growth on body composition and physiological state of the pig at birth. Journal of Animal Science 71, 26452653.CrossRefGoogle ScholarPubMed
Leenhouwers, JI, Knol, E, Groot, P, Vos, H, Lende, T 2002. Fetal development in the pig in relation to genetic merit for piglet survival. Journal of Animal Science 80, 17591770.CrossRefGoogle ScholarPubMed
Legault, C 1998. Génétique et prolificité chez la truie: la voie hyperprolifique et la voie sino-européenne. Productions Animales 11, 214218.Google Scholar
Lonergan, SM, Huff-Lonergan, E, Rowe, LJ, Kuhlers, DL, Jungst, SB 2001. Selection for lean growth efficiency in Duroc pigs influences pork quality. Journal of Animal Science 79, 20752085.CrossRefGoogle ScholarPubMed
Métayer, A, Daumas, G 1998. Estimation of the lean meat content of pig carcasses using the measurement of different cuts. Journées de la Recherche Porcine en France 30, 711.Google Scholar
Monin, G 2003. Abattage des porcs et qualités des carcasses et des viandes. Productions Animales 16, 251262.CrossRefGoogle Scholar
Mormède, P, Courvoisier, H, Ramos, A, Marissal-Arvy, N, Ousova, O, Désautés, C, Duclos, M, Chaouloff, F, Moisan, MP 2002. Molecular genetic approaches to investigate individual variations in behavioral and neuroendocrine stress responses. Psychoneuroendocrinology 27, 563583.CrossRefGoogle ScholarPubMed
Mormède, P, Dantzer, R 1978. Behavioral and pituitary-adrenal characteristics of pigs differing by their susceptibility to the malignant hyperthermia syndrome induced by halothane anesthesia. 2. pituitary-adrenal-function. Annales de Recherches Vétérinaires 9, 569576.Google Scholar
Navegantes, L, Migliorini, R, Kettelhut, I 2002. Adrenergic control of protein metabolism in skeletal muscle. Current Opinion in Clinical Nutrition and Metabolic Care 5, 281286.CrossRefGoogle ScholarPubMed
Ousova, O, Guyonnet-Duperat, V, Iannuccelli, N, Didanel, JP, Milan, D, Genet, C, Llamas, B, Yerle, M, Gellin, J, Chardon, P, Emptoz-Bonneton, A, Pugeat, M, Mormède, P, Moisan, MP 2004. Corticosteroid binding globulin: a new target for cortisol-driven obesity. Molecular Endocrinology 18, 16871696.CrossRefGoogle ScholarPubMed
Plastow, GS, Carrión, D, Gil, M, García-Regueiro, JA, Font i Furnols, M, Gispert, M, Oliver, MA, Velarde, A, Guárdia, MD, Hortós, M, Rius, MA, Sárraga, C, Díaz, I, Valero, A, Sosnicki, A, Klont, R, Dornan, S, Wilkinson, JM, Evans, G, Sargent, C, Davey, G, Connolly, D, Houeix, B, Maltin, CM, Hayes, HE, Anandavijayan, V, Foury, A, Geverink, N, Cairns, M, Tilley, RE, Mormède, P, Blott, SC 2005. Quality pork genes and meat production. Meat Science 70, 409421.CrossRefGoogle ScholarPubMed
Rahelic, S, Puac, S 1981. Fiber types in Longissimus dorsi from wild and highly selected pig breeds. Meat Science 5, 439450.Google Scholar
Rehfeldt, C, Fiedler, I, Dietl, G, Ender, K 2000. Myogenesis and postnatal skeletal muscle cell growth as influenced by selection. Livestock Production Science 66, 177188.CrossRefGoogle Scholar
Renand, G, Larzul, C, Le Bihan-Duval, E, Le Roy, P 2003. L’amélioration génétique de la qualité de la viande dans les différentes espèces: situation actuelle et perspectives à court et moyen terme. Productions Animales 16, 159173.CrossRefGoogle Scholar
Scheurink, AJ, Steffens, AB 1990. Central and peripheral control of sympathoadrenal activity and energy metabolism in rats. Physiology and Behavior 48, 909920.Google Scholar
Smith, C 1977. Use of stored frozen semen and embryos to measure genetic trends in farm livestock. Zeitschrift fur Tierzüchtung und Züchtungsbiologie 94, 119130.CrossRefGoogle Scholar
Statistical Analysis Systems Institute 2000. Statistics Version 8.02. SAS Institute Inc., Cary, NC, USA.Google Scholar
Terlouw, C, Ludriks, A, Schouten, W, Vaessen, S, Fernandez, X, Andanson, S, Père, MC 2001. Response of pigs to slaughter stress: predominance of the halothane sensitivity allele. Viandes et Produits Carnés 22, 127136.Google Scholar
Tribout, T, Caritez, JC, Gogué, J, Gruand, J, Bouffaud, M, Billon, Y, Péry, C, Griffon, H, Brénot, S, Le Tiran, M-H, Bussières, F, Le Roy, P, Bidanel, JP 2004. Estimation, par utilisation de semence congelée, du progrès génétique réalisé en France entre 1977 et 1998 dans la race porcine Large White: résultats pour quelques caractères de production et de qualité des tissus gras et maigres. Journées de la Recherche Porcine en France 36, 275282.Google Scholar
Weiler, U, Appell, HJ, Kremser, M, Hofacker, S, Glaus, R 1995. Consequences of selection on muscle composition – a comparative-study on Gracilis muscle in wild and domestic pigs. Anatomia Histologia Embryologia 24, 7780.CrossRefGoogle ScholarPubMed