Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-11T06:57:21.779Z Has data issue: false hasContentIssue false

Refinement of a quantitative gene locus on equine chromosome 16 responsible for osteochondrosis in Hanoverian warmblood horses

Published online by Cambridge University Press:  28 May 2009

V. Lampe
Affiliation:
Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany
C. Dierks
Affiliation:
Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany
O. Distl*
Affiliation:
Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Bünteweg 17p, 30559 Hannover, Germany
Get access

Abstract

Osteochondrosis (OC) is an inherited developmental disease in young horses most frequently observed in thoroughbreds, trotters, warmblood and coldblood horses. Quantitative trait loci (QTL) for equine OC have been identified in Hanoverian warmblood horses employing a whole genome scan with microsatellites. A QTL on ECA16 reached the genome-wide significance level for hock osteochondrosis dissecans (OCD). The aim of this study was to refine this QTL on ECA16 using an extended marker set of 34 newly developed microsatellites and 15 single nucleotide polymorphisms (SNPs). We used the same 14 paternal half-sib groups as in the above-mentioned whole genome scan. The QTL for OCD in hock joints on ECA16 could be delimited at an interval between 17.60 and 45.18 Mb using multipoint non-parametric linkage analyses. In addition, six microsatellites and one SNP were significantly associated with hock OCD in the QTL region between 24.26 and 42.41 Mb. Furthermore, our analysis revealed a second QTL for fetlock OC between 6.55 and 24.26 Mb on ECA16. This report is a further step towards unravelling the genes underlying QTL for equine OC and towards the development of a marker test for OC in Hanoverian warmblood horses.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abecasis, GR, Cherny, SS, Cookson, WO, Cardon, LR 2002. Merlin rapid analysis of dense genetic maps using sparse gene flow trees. Nature Genetics 30, 97101.CrossRefGoogle ScholarPubMed
Arnan, P, Hertsch, B 2005. OCD des Fessel-, Sprung- und Kniegelenks im Vergleich vom Fohlen zum Zweijährigen. Pferdeheilkunde 21, 322326.CrossRefGoogle Scholar
Dierks, C, Löhring, K, Lampe, V, Wittwer, C, Drögemüller, C, Distl, O 2007. Genome-wide search for markers associated with osteochondrosis in Hanoverian Warmblood horses. Mammalian Genome 10, 739747.CrossRefGoogle Scholar
Grøndahl, AM, Dolvik, NI 1993. Heritability estimations of osteochondrosis in the tibiotarsal joint and of bony fragments in the palmar/plantar portion of the metacarpo- and metatarsophalangeal joints of horses. Journal of American Veterinary Medical Association 203, 101104.CrossRefGoogle ScholarPubMed
Jeffcott, LB 1991. Osteochondrosis in the horse – searching for the key to pathogenesis. Equine Veterinary Journal 23, 331338.CrossRefGoogle ScholarPubMed
Jeffcott, LB, Henson, FMD 1998. Studies on growth cartilage in the horse and their application to aetiopathogenesis of dyschondroplasia (osteochondrosis). The Veterinary Journal 156, 177192.CrossRefGoogle ScholarPubMed
Kong, A, Cox, NJ 1997. Allele-sharing models: LOD scores and accurate linkage tests. American Journal of Human Genetics 61, 11791188.CrossRefGoogle ScholarPubMed
Kroll, A, Hertsch, B, Höppner, S 2001. Entwicklung osteochondraler Veränderungen in den Fessel- und Talokruralgelenken im Röntgenbild beim Fohlen. Pferdeheilkunde 17, 489500.CrossRefGoogle Scholar
Kruglyak, L, Daly, MJ, Reeve-Daly, MP, Lander, ES 1996. Parametric and nonparametric linkage analysis: a unified multipoint approach. American Journal of Human Genetics 58, 13471363.Google ScholarPubMed
KWPN 1994. The frequency and heredity of navicular disease, sesamoidosis, fetlock joint arthrosis, bone spavin, osteochondrosis of the hock. A radiographic progeny study. KWPN (Koninklijke Vereniging Warmbloed Paardenstammboek) Nederland, Zeist, The Netherlands.Google Scholar
Natowicz, MR, Short, MP, Wang, Y, Dickersin, GR, Gebhardt, MC, Rosenthal, DI, Sims, KB, Rosenberg, AE 1996. Clinical and biochemical manifestations of hyaluronidase deficiency. The New England Journal of Medicine 335, 10291033.CrossRefGoogle ScholarPubMed
Penedo, MC, Millon, LV, Bernoco, D, Bailey, E, Binns, M, Cholewinski, G, Ellis, N, Flynn, J, Gralak, B, Guthrie, A, Hasegawa, T, Lindgren, G, Lyons, LA, Roed, KH, Swinburne, JE, Tozaki, T 2005. International Equine Gene Mapping Workshop Report: a comprehensive linkage map constructed with data from new markers and by merging four mapping resources. Cytogenetics and Genome Research 111, 515.CrossRefGoogle ScholarPubMed
Philipsson, J, Andreasson, E, Sandgren, B, Dalin, G, Carlsten, J 1993. Osteochondrosis in the tarsocrural joint and osteochondral fragments in the fetlock joints in Standardbred trotters. II. Heritability. Equine Veterinary Journal (suppl. 16), 3841.CrossRefGoogle Scholar
Pieramati, C, Pepe, M, Silvestrelli, M, Bolla, A 2003. Heritability estimation of osteochondrosis dissecans in Maremmano horses. Livestock Production Science 79, 249255.CrossRefGoogle Scholar
Schober, M 2003. Schätzung der genetischen Effekte beim Auftreten von OCD. PhD, Georg-August-University Göttingen.Google Scholar
Stock, KF, Hamann, H, Distl, O 2005a. Prevalence of osseous fragments in distal and proximal interphalangeal, metacarpo- and metatarsophalangeal and tarsocrural joints of Hanoverian Warmblood horses. Journal of Veterinary Medicine A 52, 388394.CrossRefGoogle ScholarPubMed
Stock, KF, Hamann, H, Distl, O 2005b. Estimation of genetic parameters for the prevalence of osseous fragments in limb joints of Hanoverian Warmblood horses. Journal of Animal Breeding and Genetics 122, 271280.CrossRefGoogle ScholarPubMed
Swinburne, JE, Boursnell, M, Hill, G, Pettitt, L, Allen, T, Chowdhary, B, Hasegawa, T, Kurosawa, M, Leeb, T, Mashima, S, Mickelson, JR, Raudsepp, T, Tozaki, T, Binns, M 2006. Single linkage group per chromosome genetic linkage map for the horse, based on two three-generation, full-sibling, crossbred horse reference families. Genomics 87, 129.CrossRefGoogle ScholarPubMed
Triggs-Raine, B, Salo, TJ, Zhang, H, Wicklow, BA, Natowicz, MR 1999. Mutations in HYAL1, a member of a tandemly distributed multigene family encoding disparate hyaluronidase activities, cause a newly described lysosomal disorder, mucopolysaccharidosis IX. Proceedings of National Academy of Sciences 96, 62966300.CrossRefGoogle Scholar
Trotter, GW, McIlwraith, CW 1981. Osteochondrosis in horses: pathogenesis and clinical syndromes. American Association of Equine Practitioners 27, 141160.Google Scholar
Van de Lest, CH, Van den Hoogen, BM, Van Weeren, PR, Brouwers, JFHM, Van Golde, LMG, Barneveld, A 1999. Changes in bone morphogenic enzymes and lipid composition of equine osteochondrotic subchondral bone. Equine Veterinary Journal (suppl. 31), 3137.CrossRefGoogle ScholarPubMed
Van Weeren, PR 2005. Osteochondrosis: a challenging enigma. Pferdeheilkunde 21, 285292.CrossRefGoogle Scholar
Whittemore, AS, Halpern, J 1994. A class of tests for linkage using affected pedigree members. Biometrics 50, 118127.CrossRefGoogle ScholarPubMed
Wigginton, JE, Abecasis, GR 2005. PEDSTATS: descriptive statistics, graphics, and quality assessment for gene mapping data. Bioinformatics 21, 34453447.CrossRefGoogle ScholarPubMed
Wittwer, C, Hamann, H, Rosenberger, E, Distl, O 2006. Prevalence of osteochondrosis in the limb joints of South German Coldblood horses. Journal of Veterinary Medicine A 53, 531539.CrossRefGoogle ScholarPubMed
Wittwer, C, Hamann, H, Rosenberger, E, Distl, O 2007a. Genetic parameters for the prevalence of osteochondrosis in the limb joints of South German Coldblood horses. Journal of Animal Breeding and Genetics 124, 302307.CrossRefGoogle ScholarPubMed
Wittwer, C, Löhring, K, Drögemüller, C, Hamann, H, Rosenberger, E, Distl, O 2007b. Mapping quantitative trait loci for osteochondrosis in fetlock and hock joints and palmar/plantar osseous fragments in fetlock joints of South German Coldblood horses. Animal Genetics 38, 350357.CrossRefGoogle ScholarPubMed
Supplementary material: File

Lampe supplementary material

Tables.doc

Download Lampe supplementary material(File)
File 691.2 KB