Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T05:57:45.015Z Has data issue: false hasContentIssue false

Downward, upstream or downstream? Assessment of meio- and macrofaunal colonization patterns in a gravel-bed stream using artificial substrates

Published online by Cambridge University Press:  30 October 2012

Maria Cristina Bruno*
Affiliation:
Fondazione Edmund Mach, Research and Innovation Centre, Via E. Mach 1, I-38010 S. Michele all'Adige (TN), Italy
Elisa Bottazzi
Affiliation:
Department of Environmental Sciences, University of Parma, Parco Area delle Scienze 11/A, I-43124 Parma, Italy
Giampaolo Rossetti
Affiliation:
Department of Environmental Sciences, University of Parma, Parco Area delle Scienze 11/A, I-43124 Parma, Italy
*
*Corresponding author. cristina.bruno@fmach.it
Get access

Abstract

The aim of this research was to investigate three main movement patterns of meiofauna and macrofauna in the riverbed: (1) vertical (downwards) within the interstitial habitat; (2) downstream (negative rheotaxis); (3) upstream (positive rheotaxis). The study was conducted in two headwater streams in the Northern Apennines (Italy), during summer 2009. Sets of traps opening upwards, upstream and downstream to collect, respectively, organisms moving down into the sediment, and organisms with negative and positive rheotaxis, were placed in each sampling site. Benthic samples were collected as well, to compare the benthic community composition with the assemblages colonizing the traps. Meiofauna was the dominant component, representing 95% in benthos and 85% in traps. Vertical top-opened traps collected more taxonomic groups and more individuals of macro- and meiofauna than the horizontal traps, suggesting a dominance of movements deep within the substrate rather than horizontal patterns. Horizontal traps opening upstream (negative rheotaxis) were colonized by more individuals than the traps opening downstream (positive rheotaxis), demonstrating the great importance of movements directed downstream as a primary source of colonization of new areas. Temporary meiofauna (i.e., insect larvae), which was the dominant component of trap assemblages, displayed predominantly vertical movements, supporting the nursery and refuge function of the hyporheic habitat for taxa which spend only the early larval stages in the hyporheos. The results also stress the importance of including meiofauna in studies characterizing the lotic communities.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, J.D., 1997. Stream Ecology. Structure and Function of Running Waters, Chapman and Hall, London, 388 p.Google Scholar
Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Aust. Ecol., 26, 3246.Google Scholar
Anderson, M.J., Gorley, R.N. and Clarke, K.R., 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods, Primer-E, Plymouth, 214 p.Google Scholar
APAT, 2007. IFF 2007 – Indice di Funzionalità Fluviale. Nuova versione del metodo revisionata e aggiornata, Manuale APAT, Trento, 325 p.
Bergey, E.A. and Ward, J.V., 1989. Upstream-downstream movements of aquatic invertebrates in a Rocky mountain stream. Hydrobiologia, 185, 7182.CrossRefGoogle Scholar
Bilton, D.T., Freeland, J.R. and Okamura, B., 2001. Dispersal in freshwater invertebrates. Annu. Rev. Ecol. Syst., 32, 159181.CrossRefGoogle Scholar
Bird, G.A. and Hynes, H.B.N., 1981. Movement of immature aquatic insects in a lotic habitat. Hydrobiologia, 77, 103112.CrossRefGoogle Scholar
Bo, T., Cucco, M., Fenoglio, S. and Malacarne, G., 2006. Colonisation patterns and vertical movements of stream invertebrates in the interstitial zone: a case study in the Apennines, NW Italy. Hydrobiologia, 568, 6778.CrossRefGoogle Scholar
Boulton, A.J., 1989. Over-summering refuges of aquatic macroinvertebrates in two intermittent streams in central Victoria. Trans. R. Soc. South Aust., 113, 2334.Google Scholar
Boulton, A.J., 2000. The subsurface macrofauna. In: Jones, J.B. and Mulholland, P.J. (eds), Streams and Ground Waters, Academic Press, San Diego, 337361.CrossRefGoogle Scholar
Boulton, A.J., 2007. Hyporheic rehabilitation in rivers: restoring vertical connectivity. Freshwater Biol., 52, 632650.CrossRefGoogle Scholar
Boulton, A.J., Findlay, S., Marmonier, P., Stanley, E.H. and Vallet, H.M., 1998. The functional significance of the hyporheic zone in streams and rivers. Annu. Rev. Ecol. Syst., 29, 5981.CrossRefGoogle Scholar
Boulton, A.J., Valett, H.M. and Fisher, S.G., 1992. Spatial distribution and taxonomic composition of the hyporheos of several Sonoran Desert streams. Arch. Hydrobiol., 125, 3761.Google Scholar
Bretschko, G., 1992. Differentiation between epigeic and hypogeic fauna in gravel streams. Regul. River, 7, 1722.CrossRefGoogle Scholar
Brittain, J.E. and Eikeland, T.J., 1988. Invertebrate drift – a review. Hydrobiologia, 166, 7793.CrossRefGoogle Scholar
Brunke, M. and Gonser, T., 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biol., 37, 133.CrossRefGoogle Scholar
Bruno, M.C., Maiolini, B., Carolli, M. and Silveri, L., 2009. Impact of hydropeaking on hyporheic invertebrates in an Alpine stream (Trentino, Italy). Ann. Limnol. - Int. J. Lim., 45, 157170.CrossRefGoogle Scholar
Campaioli, S., Ghetti, P.F., Minelli, A. and Ruffo, S., 1994. Manuale per il riconoscimento dei macroinvertebrati delle acque dolci italiane, Vol. I. Provincia Autonoma di Trento, Trento, 357 p.Google Scholar
Campaioli, S., Ghetti, P.F., Minelli, A. and Ruffo, S., 1999. Manuale per il riconoscimento dei macroinvertebrati delle acque dolci italiane, Vol. II. Provincia Autonoma di Trento, Trento, 484 p.Google Scholar
Claret, C., Marmonier, P., Dole-Olivier, M.-J., Creuzé des Châtelliers, M., Boulton, A.J. and Castella, E., 1999. A functional classification of interstitial invertebrates: supplementing measures of biodiversity using species traits and habitat affinities. Arch. Hydrobiol., 145, 385403.CrossRefGoogle Scholar
Clarke, K.R. and Gorley, R.N., 2006. PRIMER-E® (v6). User Manual/Tutorial, PRIMER-E Ltd, Plymouth, 190 p.Google Scholar
Collier, K.J. and Scarsbrook, M.R., 2000. Use of riparian and hyporheic habitats. In: Collier, K.J. and Winterbourn, M.J. (eds.), New Zealand Stream Invertebrates: Ecology and Implications for Management, New Zealand Limnological Society, Christchurch, 179206.Google Scholar
Del Rosario, R.B. and Resh, V.H., 2000. Invertebrates in intermittent and perennial streams: is the hyporheic zone a refuge from drying? J. N. Am. Benthol. Soc., 19, 680696.CrossRefGoogle Scholar
Dole-Olivier, M.-J. and Marmonier, P., 1992. Patch distribution of interstitial communities: prevailing factors. Freshwater Biol., 27, 177191.CrossRefGoogle Scholar
Dole-Olivier, M.-J., Marmonier, P. and Beffy, J.L., 1997. Response of invertebrates to lotic disturbance: is the hyporheic zone a patchy refugium? Freshwater Biol., 37, 257276.CrossRefGoogle Scholar
Downes, B.J. and Keough, M.J., 1998. Scaling of colonization processes in streams: parallels and lessons from marine hard substrata. Aust. J. Ecol., 23, 826.CrossRefGoogle Scholar
Dussart, B.H., 1967. Les Copépodes des eaux continentales d'Europe occidentale. Tome I: Calanoïdes et Harpacticoïdes, N. Boubée et Cie, Paris, 500 p.Google Scholar
Dussart, B.H. 1969. Les Copépodes des Eaux Continentales d'Europe Occidentale. Tome II: Cyclopoïdes et Biologie, N. Boubée et Cie, Paris, 292 p.Google Scholar
Elliott, J.M., 2003. A comparative study of the dispersal of 10 species of stream invertebrates. Freshwater Biol., 48, 16521668.CrossRefGoogle Scholar
Elser, P., 2001. Assessing small-scale directional movements of benthic invertebrates in streams by using a multidirectional cage trap. Limnologica, 31, 119128.CrossRefGoogle Scholar
Fenoglio, S., Agosta, P., Bo, T. and Cucco, M., 2002. Field experiments on colonization and movements of stream invertebrates in an Apennine river (Visone, NW Italy). Hydrobiologia, 474, 125130.CrossRefGoogle Scholar
Fenoglio, S., Bo, T., Gallina, G. and Cucco, M., 2004. Vertical distribution in the water column of drifting stream macroinvertebrates. J. Freshwater Ecol., 19, 485492.CrossRefGoogle Scholar
Fenoglio, S., Bo, T. and Bosi, G., 2006. Deep interstitial habitat as refuge for Agabus paludosus (Fabricius, 1801) (Coleoptera: Dytiscidae) during summer droughts. Coleopts Bull., 60, 3741.CrossRefGoogle Scholar
Fiers, F. and Ghenne, V., 2000. Cryptozoic copepods from Belgium: diversity and biogeographic implications. Belg. J. Zool., 130, 1119.Google Scholar
Fochetti, R. and Tierno De Figueroa, J.M., 2009. Plecoptera, Vol. 43, Fauna d'Italia, Calderini, Bologna, 339 p.Google Scholar
Fowler, R.T., 2002. Relative importance of surface and subsurface movement on benthic community recovery in the Makaretu River, North Island, New Zealand. N. Z. J. Mar. Fresh., 36, 459469.CrossRefGoogle Scholar
Franken, R.J.M., Storey, R.G. and Williams, D.D., 2001. Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream. Hydrobiologia, 444, 183195.CrossRefGoogle Scholar
Gibert, J., Stanford, J., Dole-Olivier, M.-J. and Ward, J.V., 1994. Basic attributes of ground water ecosystems and prospects for research. In: Gibert, J., Danielopol, D.L. and Stanford, J. (eds), Ground Water Ecology, Academic Press, San Diego, 740.CrossRefGoogle Scholar
Giller, P.S. and Malmqvist, B., 1998. The Biology of Streams and Rivers, Oxford University Press, Oxford, 296 p.Google Scholar
Golladay, S.W. and Hax, C.L., 1995. Effects of an engineered flow disturbance on meiofauna in a northTexas prairie stream. J. N. Am. Benthol. Soc., 14, 404413.CrossRefGoogle Scholar
Hakenkamp, C.C. and Morin, A., 2000. The importance of meiofauna to lotic ecosystem functionality. Freshwater Biol., 44, 165175.CrossRefGoogle Scholar
Hakenkamp, C.C. and Palmer, M.A., 2000. The ecology of hyporheic meiofauna. In: Jones, J.B. and Mulholland, P.J. (eds.), Streams and Ground Waters, Academic Press, San Diego, 307336.CrossRefGoogle Scholar
Hancock, P.J., Boulton, A.J. and Humphreys, W.F., 2005. Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeol. J., 13, 98111.CrossRefGoogle Scholar
Hildrew, A.G., 1992. Food web and species interactions. In: Calow, P. and Petts, G.E. (eds.), The Rivers Handbook, Blackwell Scientific, Oxford, 309330.Google Scholar
Hildrew, A.G. and Giller, P.S., 1994. Patchiness, species interactions and disturbance in the stream benthos. In: Giller, P.S., Hildrew, A.G. and Rafaelli, D.G. (eds.), Aquatic Ecology: Scale, Pattern and Process, Blackwell Scientific Publications, Oxford, 2162.Google Scholar
Jacobi, G.Z. and Cary, S.J., 1996. Winter stoneflies (Plecoptera) in seasonal habitats in New Mexico, USA. J. N. Am. Benthol. Soc., 15, 690699.CrossRefGoogle Scholar
Karaytug, S., 1999. Copepoda: Cyclopoida. Genera Paracyclops, Ochridacyclops and key to the Eucyclopinae. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World No. 14, Backhuys Publishers, Leiden, 224 p.Google Scholar
Lancaster, J. and Belyea, L.R., 1997. Nested hierarchies and scale-dependence of flow refugium use. J. N. Am. Benthol. Soc., 16, 221238.CrossRefGoogle Scholar
Lancaster, J. and Hildrew, A.G., 1993. Flow refugia and microdistribution of lotic macroinvertebrates. J. N. Am. Benthol. Soc., 12, 385393.CrossRefGoogle Scholar
Lancaster, J., Hildrew, A.G. and Gjerlov, C., 1996. Invertebrate drift and the longitudinal transport processes in streams. Can. J. Fish. Aquat. Sci., 53, 572582.CrossRefGoogle Scholar
Lechthaler, W. and Stockinger, W., 2005. Trichoptera – Key to Larvae from Central Europe, CD-Rom-Edition, Vienna.Google Scholar
Lencioni, V., Maiolini, B. and Oss, M., 2007. Continuità verticale e biodiversità dello zoobenthos in torrenti alpini. St. Trent. Sci. Nat., Acta Biol., 83, 1520.Google Scholar
Lencioni, V., Maiolini, B., Fochetti, R., Grasso, M., Boscaini, A. and Dumnicka, E., 2006. Artificial substrate colonization by invertebrates in two high altitude alpine streams. Verh. Internat. Verein. Limnol., 29, 18661870.Google Scholar
Mackay, R.J., 1992. Colonization by lotic macroinvertebrates: a review of processes and patterns. Can. J. Fish. Aquat. Sci., 49, 617628.CrossRefGoogle Scholar
Marmonier, P., Vervier, P., Gibert, J. and Dole-Olivier, M.-J., 1993. Biodiversity in ground waters. TREE, 8, 392395.Google ScholarPubMed
Marmonier, P., Archambaud, G., Belaidi, N., Bougon, N., Breil, P., Chauvet, E., Claret, C., Cornut, J., Datry, T., Dole-Olivier, M.-J., Dumont, B., Flipo, N., Foulquier, A., Gérino, M., Guilpart, A., Julien, F., Maazouzi, C., Martin, D., Mermillod-Blondin, F., Montuelle, B., Namour, P., Navel, S., Ombredane, D., Pelte, T., Piscart, C., Pusch, M., Stroffek, S., Robertson, A., Sanchez-Pérez, J.-M., Sauvage, S., Taleb, A., Wantzen, M. and Vervier, P., 2012. The role of organisms in hyporheic processes: gaps in current knowledge, needs for future research and applications. Ann. Limnol. - Int. J. Lim., 48, 253266.CrossRefGoogle Scholar
McIntyre, A.D., 1969. Ecology of marine meiobenthos. Biol. Rev. Biol. P. Camb., 44, 245290.CrossRefGoogle Scholar
Meisch, C., 2000. Freshwater Ostracoda of Western and Central Europe. Spektrum Academischer Verlag GmbH, Heidelberg, Berlin, 522 p.Google Scholar
Packman, A.I. and Bencala, K.E., 2000. Modeling methods in the study of surface-subsurface hydrologic interactions. In: Jones, J.B. and Mulholland, P.J. (eds.), Streams and Ground Waters, Academic Press, San Diego, California, 4580.CrossRefGoogle Scholar
Palmer, M.A. and Strayer, D.L., 1996. Meiofauna. In: Houer, F.R. and Lamberti, G.A. (eds.), Methods in Stream Ecology, Academic Press, New York, 315337.Google Scholar
Palmer, M.A., Arensburger, P., Silver Botts, P., Hakenkamp, C. and Reid, J.W., 1995. Disturbance and the community structure of stream invertebrates: patch-specific effects and the role of refugia. Freshwater Biol., 34, 343356.CrossRefGoogle Scholar
Palmer, M.A., Bely, A.E. and Berg, K.E., 1992. Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis. Oecologia, 89, 182194.CrossRefGoogle ScholarPubMed
Panek, K.L.J., 1991. Migrations of the macrozoobenthos within the bed sediments of a gravel stream (Ritrodat-Lunz study area, Austria). Verh. Internat. Verein. Limnol., 24, 19441947.Google Scholar
Pennak, R.W., 1988. Ecology of freshwater meiofauna. In: Higgins, R.P. and Thiel, H. (eds.), Introduction to the Study of Meiofauna, Smithonian Institution Press, Washington, 3960.Google Scholar
Piscart, C., Moreteau, J.-C. and Beisel, J.-N., 2006. Monitoring changes in freshwater macroinvertebrate communities along a salinity gradient using artificial substrates. Environ. Monit. Assess., 116, 529542.CrossRefGoogle ScholarPubMed
Radwell, A.J. and Brown, A.V., 2008. Benthic meiofauna assemblage structure of headwater streams: density and distribution of taxa relative to substrate size. Aquat. Ecol., 42, 405414.CrossRefGoogle Scholar
Richards, C. and Minshall, G.W., 1988. The influence of periphyton abundance on Baetis bicaudatus distribution and colonization in a small stream. J. N. Am. Benthol. Soc., 7, 7786.CrossRefGoogle Scholar
Robertson, A.L., 2000. Lotic meiofaunal community dynamics: colonisation, resilience and persistence in a spatially and temporally heterogeneous environment. Freshwater Biol., 44, 135147.CrossRefGoogle Scholar
Robertson, A.L., Lancaster, J. and Hildrew, A.G., 1995. Stream hydraulics and the distribution of microcrustacea – a role for refugia. Freshwater Biol., 33, 469484.CrossRefGoogle Scholar
Robertson, A.L., Rundle, S.D. and Schmid-Araya, J.M., 2000. Putting the meio- into stream ecology: current findings and future directions for lotic meiofaunal research. Freshwater Biol., 44, 177183.CrossRefGoogle Scholar
Rosenberg, D.M. and Resh, V.H., 1982. The use of artificial substrates in the study of freshwater benthic macroinvertebrates. In: Resh, V.H. and Rosenberg, D.M. (eds.), The Ecology of Aquatic Insects, Praeger, New York, 175235.Google Scholar
Rouch, R., 1991. Harpacticoid assemblages from a Pyrenean creek hyporheos. Ann. Limnol. - Int. J. Lim., 27, 227241.CrossRefGoogle Scholar
Schmid, P.E., Tokeshi, M., and Schmid-Araya, J.M., 2000. Relation between population density and body size in stream communities. Science, 289, 15571560.CrossRefGoogle ScholarPubMed
Schmid-Araya, J.M., 2000. Invertebrate recolonization patterns in the hyporheic zone of a gravel stream. Limnol. Oceanogr., 45, 10001005.CrossRefGoogle Scholar
Schmid-Araya, J.M. and Schmid, P.E., 1995. The invertebrate species of a gravel stream. Jber. Biol. Stn. Lunz, 15, 1121.Google Scholar
Sharpe, A.K. and Downes, B.J., 2006. The effects of potential larval supply, settlement and post-settlement processes on the distribution of two species of filter-feeding caddisflies. Freshwater Biol., 51, 717729.CrossRefGoogle Scholar
Shaw, D.W. and Minshall, G.W., 1980. Colonization of an introduced substrate by stream invertebrates. Oikos, 34, 259271.CrossRefGoogle Scholar
Silver, P., Palmer, M.A., Swan, C.M. and Wooster, D., 2002. The small scale ecology of freshwater meiofauna. In: Rundle, S.D., Robertson, A.L. and Schmid-Araya, J.M. (eds.), Freshwater Meiofauna: Biology and Ecology, Backhuys Publishers, Leiden, 217239.Google Scholar
Sliva, L. and Williams, D.D., 2005. Responses of hyporheic meiofauna to habitat manipulation. Hydrobiologia, 548, 217232.CrossRefGoogle Scholar
Smock, L.A., 1994. Movements of invertebrates between stream channels and forested floodplains. J. N. Am. Benthol. Soc., 13, 524531.CrossRefGoogle Scholar
Söderström, O., 1987. Upstream movements of invertebrates in running water – a review. Arch. Hydrobiol., 111, 197208.Google Scholar
StatSoft Inc., 2008. STATISTICA (data analysis software system), version 8.1. www.stasoft.com.
Stead, T.K., Schmid-Araya, J.M. and Hildrew, A.G., 2003. All creatures great and small: patterns in the stream benthos across a wide range of metazoan body size. Freshwater Biol., 48, 532547.CrossRefGoogle Scholar
Stead, T.K., Schmid-Araya, J.M. and Hildrew, A.G., 2005. Secondary production of a stream metazoan community: does the meiofauna make a difference? Limnol. Oceanogr., 50, 398403.CrossRefGoogle Scholar
Stoch, F., 1998. Moraria alpina n. sp. and redescription of Moraria radovnae Brancelj 1988, new rank, from Italian and Slovenian Alps (Crustacea, Copepoda, Harpacticoida). St. Trent. Sci. Nat., Acta Biol., 73, 135145.Google Scholar
Stoch, F., 2000–2006. CKmap for Windows. Version 5.3. Ministry for Environment, Territory and Sea, Nature Protection Directorate. Available online at: http://ckmap. faunaitalia.it
Stoch, F. and Bruno, M.C., 2011. Acanthocyclops magistridussarti sp. nov. from ground waters of peninsular Italy, with comments on the intraspecific variability of the antennary basis ornamentation (Copepoda, Cyclopoida, Cyclopidae). In: Defaye, D., Suarez Morales, E. and von Vaupel Klein, J.C. (eds), Studies on Freshwater Copepoda, Brill, Leiden, 489506.
Swan, C.M. and Palmer, M.A., 2000. What drives small scale spatial patterns in lotic meiofauna communities. Freshwater Biol., 44, 109121.CrossRefGoogle Scholar
Townsend, C.R., 1989. The patch dynamics concept of stream community ecology. J. N. Am. Benthol. Soc., 8, 3650.CrossRefGoogle Scholar
Townsend, C.R. and Hildrew, A.G., 1976. Field experiments on the drifting, colonization and continuous redistribution of stream benthos. J. Anim. Ecol., 45, 759772.CrossRefGoogle Scholar
Ward, J.V., Bretschko, G., Brunke, M., Danielopol, D., Gibert, J., Gonser, T. and Hildrew, A.J., 1998. The boundaries of river systems: the metazoan perspective. Freshwater Biol., 40, 531569.CrossRefGoogle Scholar
Ward, J.V., Malard, F., Stanford, J.S. and Gonser, T., 2000. Interstitial aquatic fauna of shallow unconsolidated sediments, particularly hyporheic biotopes. In: Wilkens, H., Culver, D.C. and Humphreys, W.F. (eds.), Subterranean Ecosystems, Elsevier, Amsterdam, 4158.Google Scholar
Ward, J.V. and Palmer, M.A., 1994. Distribution patterns of interstitial freshwater meiofauna over a range of spatial scales, with emphasis on alluvial river-aquifer systems. Hydrobiologia, 287, 147156.CrossRefGoogle Scholar
Williams, D.D., 1984. The hyporheic zone as a habitat for aquatic insects and associated arthropods. In: Resh, V.H. and Rosenberg, D.M. (eds.), The Ecology of Aquatic Insects, Praeger, New York, 430455.Google Scholar
Williams, D.D. and Hynes, H.B.N., 1974. The occurrence of benthos deep in the substratum of a stream. Freshwater Biol., 4, 233256.CrossRefGoogle Scholar
Williams, D.D. and Hynes, H.B.N., 1976. The recolonisation mechanisms of the stream benthos. Oikos, 27, 265272.CrossRefGoogle Scholar
Williams, D.D. and Williams, N.E., 1993. The upstream/downstream movement paradox of lotic invertebrates: quantitative evidence from a Welsh mountain stream. Freshwater Biol., 30, 199218.CrossRefGoogle Scholar
Winterbottom, J.H., Orton, S.E. and Hildrew, A.G., 1997. Field experiments on the mobility of benthic invertebrates in a southern English stream. Freshwater Biol., 38, 3747.CrossRefGoogle Scholar