Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T21:58:41.992Z Has data issue: false hasContentIssue false

The effects of environmental integrity on the diversity of mayflies, Leptophlebiidae (Ephemeroptera), in tropical streams of the Brazilian Cerrado

Published online by Cambridge University Press:  14 November 2014

Leandro S. Brasil*
Affiliation:
Programa de Pós Graduação em Ecologia e Conservação – Universidade do Estado de Mato Grosso (UNEMAT) – Br 158, Km 655 – Cep. 78690-000 Caixa postal 08, Nova Xavantina, MT, USA
Leandro Juen
Affiliation:
Laboratório de Ecologia e Conservação, Instituto de Ciências Biológicas – Universidade Federal do Pará (UFPA) – Rua Augusto Correia, no 1, Bairro Guamá, Cep 66075-110, Belém, PA, USA
Helena S. R. Cabette
Affiliation:
Programa de Pós Graduação em Ecologia e Conservação – Universidade do Estado de Mato Grosso (UNEMAT) – Br 158, Km 655 – Cep. 78690-000 Caixa postal 08, Nova Xavantina, MT, USA
*
*Corresponding author: brasil_biologia@hotmail.com
Get access

Abstract

Aquatic insects are widely distributed, and are especially diverse and abundant in tropical streams, where they play an important role in the food chain due to their diversity of feeding strategies, and the potential for the transfer of energy between aquatic and terrestrial environments. The intimate relationship found between these insects and environmental variables means that they are often used as bioindicatorss in environmental studies. We tested the hypothesis that the loss of environmental integrity in tropical streams will lead to a loss of species and a decline in the abundance of mayflies (Leptophlebiidae), in addition to a change in species composition, and the dynamics of population. Collect immature leptophlebiids in 18 streams representing different degrees of conservation, in the Brazilian Cerrado. The environmental integrity of the sites was assessed using a Habitat Integrity Index (HII), which generates values of zero (degraded) to one (preserved), based on soil use, the extension and conservation of riparian forest, as well as morphological features of the stream. A total of 4945 immature leptophlebiids were collected and identified as belonging to 16 species or morphospecies. On an average, a reduction of 0.1 in the value of the HII led to the loss of five specimens and one species. The composition of the communities varied systematically along the environmental gradient, with more sensitive species being found only when the index was above a threshold of 0.6. The importance of the riparian vegetation for the aquatic biota, especially its role in the mitigation of impacts from the surrounding matrix, supports the universal conservation of this type of habitat.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, J.D., 2004. Landscapes and riverscapes: the influence of land use on stream Ecosystems. Annu. Rev. Ecol. Evol., 35, 257284.CrossRefGoogle Scholar
Allan, J.D. and Castillo, M.M., 2007. Stream Ecology: Structure e Function of Running Waters, Chapman–Hall, New York, NY.CrossRefGoogle Scholar
Axelsson, E.P., Hajalten, J., Leroy, C.J., Whitham, T.G., Julkunen-Tiitto, R. and Wennstrom, A., 2011. Leaf litter from insect-resistant transgenic trees causes changes in aquatic insect community composition. J. Appl. Ecol., 48, 14721479.CrossRefGoogle Scholar
Bacellar, L.A.P., 2005. O papel das florestas no regime hidrológico de bacias Hidrográficas. Geo br, 1, 139.Google Scholar
Baptista, D.F., Buss, D.F., Dias, L.G., Nessimian, J.L., Da Silva, E.R., De Moraes Neto, A.H., Carvalho, S.N., De-Oliveira, M.A. and Andrade, L.R., 2006. Functional feeding groups of Brazilian Ephemeroptera nymphs: ultrastructure of mouthparts. Ann. Limnol - Int. J. Lim., 42, 8796.CrossRefGoogle Scholar
Beketov, M.A., Kefford, B.J., Schäfer, R.B. and Liess, M., 2013. Pesticides reduce regional biodiversity of stream invertebrates. Proc. Natl. Acad. Sci. USA, 2, 15.Google Scholar
Bello, L.C.C. and Cabrera, I.M., 2001. Alimentación ninfal de Leptophlebiidae (Insecta: Ephemeroptera) en el Caño Paso del Diablo, Venezuela. Rev. Biol. Trop., 49, 9991003.Google Scholar
Bispo, P.C., Oliveira, L.G., Bini, L.M. and Sousa, K.G., 2006. Ephemeroptera, Plecoptera and Trichoptera assemblages from riffles in mountain streams of Central Brazil: environmental factors influencing the distribution and abundance of immatures. Braz. J. Biol., 66, 611622.CrossRefGoogle ScholarPubMed
Brasil, L.S., Shimano, Y., Batista, J.D. and Cabette, H.S.R., 2013. Effects of environmental factors on community structure of Leptophlebiidae (Insecta: Ephemeroptera) in Cerrado streams, Brazil. Iheringia Sér Zool, 103, 260265.CrossRefGoogle Scholar
Brasil, L.S., Juen, J., Batista, J.D., Pavam, M.G. and Cabette, H.S.R., 2014. Longitudinal Distribution of the Functional Feeding Groups of Aquatic Insects in Streams of the Brazilian Cerrado Savan. Neotrop. Entomol., 43, 421428. CrossRefGoogle Scholar
Brenden, T.O., Wang, L. and SU, Z., 2008. Quantitative identification of disturbance thresholds in support of aquatic resource management. Environ. Manage., 42, 821832. CrossRefGoogle ScholarPubMed
Bunn, S.E. and Davies, P.M., 1990. Why is the stream fauna of south-western Australia so impoverished? Hydrobiologia, 194, 169176.CrossRefGoogle Scholar
Buss, D.F., Baptista, F., Silveira, M.P., Nessimian, J.L. and Dorvill, F.M., 2002. Influence of water chemistry and environmental degradation on macroinvertebrate assemblages in a river basin in south-east Brazil. Hydrobiologia, 481, 125136.CrossRefGoogle Scholar
Cabette, H.S.R., Giehl, N.F., Dias-Silva, K., Juen, L. and Batista, J.D., 2010. Gerromorpha (Insecta: Heteroptera) da Bacia Hidrografica do Rio Suiá-Miçu, MT: riqueza relacionada a qualidade da água e hábitat. In: Santos, J.E., Galbiati, C. and Moschini, L.E. (eds.), Gestão e educação ambiental – água, biomonitoramento e cultura, Editorial RiMa, São Carlos, 113137.Google Scholar
Carvalho, F.G., Silva-Pinto, N., Oliveira-Júnior, J.M.B. and Juen, L., 2013. Effects of marginal vegetation removal on Odonata communities. Acta Limnol. Bras., 25, 1018.CrossRefGoogle Scholar
Castello, L., 2008. Lateral migration of Arapaima gig's in floodplains of the Amazon. Ecol. Freshw. Fish, 17, 3846.CrossRefGoogle Scholar
Chave, J., 2004. Neutral theory and community ecology. Ecol. Lett., 7, 241253. CrossRefGoogle Scholar
Clarke, K.R., 1993. Non-parametric multivariate analyses of changes in community structure. Austr. Ecol., 18, 117143. CrossRefGoogle Scholar
Colwell, R.K., 2004. Estimates: Statistical Estimation of Species Richness and Shared Species from Samples, Version 7.5., Available online at: Publishing Physics Web http://viceroy.eeb.uconn.edu/estimates. Persistent URL http://purl.oclc.org/estimates. Accessed online 26 June 2013.
Colwell, R.K. and Coddington, J.A., 1994. Estimating terrestrial biodiversity through extrapolation. Phil. Trans. R Soc. B, 345, 101118.CrossRefGoogle ScholarPubMed
Contador, T.A., Kennedy, J.H. and Rozzi, R., 2012. The conservation status of southern South American aquatic insects in the literature. Biodivers. Conserv., 21, 20952107.CrossRefGoogle Scholar
Corbi, J.J., Kleineb, P. and Trivinho-Strixino, S., 2013. Are aquatic insect species sensitive to banana plant cultivation? Ecol. Indic., 25, 156161.CrossRefGoogle Scholar
Cummins, K.W., 1973. Tropidc relations of aquatic insects. Ann. Rev. Ent., 18, 183206.CrossRefGoogle Scholar
Da Silva, E.R., Nessimian, J.L. and Coelho, L.B.N., 2010. Leptophlebiidae ocorrentes no Estado do Rio de Janeiro, Brasil: hábitats, meso-hábitats e hábitos das ninfas (Insecta: Ephemeroptera). Biota Neotrop., 10, 8794.CrossRefGoogle Scholar
De Marco, P. and Siqueira, M.F., 2009. Como determinar a distribuição potencial de espécies sob uma abordagem conservacionista? Megadiversidade, 5, 6576.Google Scholar
Dias, L.G., Molineri, C. and Ferreira, P.S.F. 2007. Ephemerelloidea (Insecta: Ephemeroptera) do Brasil. Pap Avulsos Zool., 47, 213244.Google Scholar
Dias-Silva, K., Cabette, H.S.R., Juen, L. and De Marco, P. Jr. 2010. The influence of habitat integrity and physical-chemical water variables on the structure of aquatic and semi-aquatic Heteroptera. Rev. Bras. Zool., 27, 918930.Google Scholar
Dolný, A., Harabiš, F., Bárta, D. and Lhota, S., 2012. Aquatic insects indicate terrestrial habitat degradation: changes in taxonomical structure and functional diversity of dragonflies in tropical rainforest of East Kalimantan. Trop. Zool., 25, 3741.CrossRefGoogle Scholar
Domínguez, E., Molineri, C., Pescador, M.L., Hubbard, M. and Nieto, V., 2006. Ephemeroptera of South America, Pensoft, Moscow.Google Scholar
Dosskey, M.G., Vidon, P., Gurwick, N.P., Allan, C.J., Duval, T.P., Lowrance, R., Michael, G., Vidon, P., Gurwick, N.P., Allan, C.J., Duval, T.P. and Lowrance, R., 2010. The role of riparian vegetation in protecting and improving chemical water quality in streams 1. J. Am. Water Resour. As., 47, 261277.CrossRefGoogle Scholar
Heino, J., 2013. Does dispersal ability affect the relative importance of environmental control and spatial structuring of littoral macroinvertebrate communities? Oecologia, 171, 971980.CrossRefGoogle ScholarPubMed
Holzman, R., Collar, D.C., Mehta, R.S. and Wainwright, P.C., 2011. Functional complexity can mitigate performance trade-offs. Amer. Nat., 177, 6983.CrossRefGoogle ScholarPubMed
INMET, 2013. Instituto Nacional de Meteorologia, Brasil. Electronic database Publishing PhysicsWeb http://www.inmet.gov.br/portal/ accessed online 4 August 2013.
Jackson, D.A., 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology, 74, 22042214.CrossRefGoogle Scholar
Karr, J.R., 1981. Assessment of biotic integrity using fish communities. Fisheries, 6, 2127.2.0.CO;2>CrossRefGoogle Scholar
Karr, J.R., 1999. Defining and measuring river health. Freshw. Biol., 41, 221234. CrossRefGoogle Scholar
Klapproth, J.C. and Johnson, J.E., 2000. Understanding the Science Behind Riparian Forest Buffers: Effects on Water Quality, Virginia Cooperative Extension, Virginia.Google Scholar
Landeiro, V.L., Hamada, N., Godoy, B.S. and Melo, A.S., 2010. Effects of litter patch area on macroinvertebrate assemblage structure and leaf breakdown in Central Amazonian streams. Hydrobiologia, 649, 355363. CrossRefGoogle Scholar
Legendre, P. and Legendre, L., 2012. Numerical Ecology, Elsevier, Amsterdam.Google Scholar
Ligeiro, R., Hughes, R.M., Kaufmann, P.R., Macedo, D.R., Firmiano, K.R., Ferreira, W.R., Oliveira, D., Melo, A.S. and Callisto, M., 2013. Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecol. Indic., 25, 4557.CrossRefGoogle Scholar
Monteiro-Júnior, C.S., Couceiro, S.R.M., Hamada, N. and Juen, L., 2013. Effect of vegetation removal for road building on richness and composition of Odonata communities in Amazonia, Brazil. Int. J. Odonatol., 16, 764798.Google Scholar
Nessimian, J.L., Venticinque, E.M., Zuanon, J., De Marco, P., Gordo, M., Fidelis, L., Batista, J.D. and Juen, J., 2008. Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams. Hydrobiologia, 614, 117131.CrossRefGoogle Scholar
Nessimian, J.L., Venticinque, E.M., Zuanon, J., De Marco, P., Gordo, M., Fidelis, L., Batista, J.D. and Juen, J., 2013. Uso do solo, integridade de hábitat e agrupamentos de insetos aquáticos em igarapés na Amazônia Central. In: Castro, G. (ed.), Conservação da Biodiversidade em paisagens antropizadas do Brasil, UFPR, Curitiba, 343371.Google Scholar
Peel, M.C., Finlayson, B.L. and Mcmahon, T.A., 2007. Updated world map of the Koppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644.CrossRefGoogle Scholar
Pereira, L.R., Cabette, H.S.R. and Juen, L., 2012. Trichoptera as bioindicators of habitat integrity in the Pindaíba river basin, Mato Grosso (Central Brazil). Ann. Limnol. - Int. J. Lim., 48, 295302.CrossRefGoogle Scholar
Peres-Neto, P.R., Jackson, D.A. and Somers, K.M., 2003. Giving meaningful interpretation to ordination axes: assessing loading significance in principal component analysis. Ecology, 84, 23472363.CrossRefGoogle Scholar
Polegatto, C. and Froehlich, C.G., 2003. Feeding strategies in Atalophlebiinae (Ephemeroptera: Leptophlebiidae), with considerations on scraping and filtering. Behaviour, 1, 5561.Google Scholar
Poole, G.C., 2002. Fluvial landscape ecology: addressing uniqueness within the river discontinuum. Freshw. Biol, 47, 641660.CrossRefGoogle Scholar
Popielarz, P.A. and Neal, Z.P., 2007. The niche as a theoretical tool. Ann. Rev. Soc., 33, 6584. CrossRefGoogle Scholar
Primack, R.B. and Rodrigues, E., 2001. Biologia da conservação, Planta, Lodrina.Google Scholar
Salles, F.F., 2006. A Ordem Ephemeroptera no Brasil (Insecta): taxonomia e diversidade. PhD thesis, Federal University of Viçosa.Google Scholar
Salles, F.F., Nascimento, J.M.C., Massariol, F.C., Angeli, K.B. and Barcelos, P.R.B., 2010. Primeiro levantamento da fauna de Ephemeroptera (Insecta) do Espírito Santo, Sudeste do Brasil. Biota. Neotrop., 10, 293306.CrossRefGoogle Scholar
Savage, H.M., 1987. Biogeographic classification of the Neotropical Leptophlebiidae (Ephemeroptera) based upon geological centers of ancestral origin and ecology. Stud. Neotrop. Fauna E, 22, 3741.CrossRefGoogle Scholar
Scrimgeour, G.J., 1991. Life history and production of Deleatidium (Ephemeroptera: Leptophlebiidae) in an unstable New Zealand river Life history and production of Deleatidium (Ephemeroptera: Leptophlebiidae) in an unst. New Zeal. J. Mar. Fresh, 25, 9399.CrossRefGoogle Scholar
Selvakumar, C., Sivaramakrishnan, K.G., Janarthanan, S., Arumugam, M. and Arunachalam, M., 2014. Impact of riparian land-use patterns on Ephemeroptera community structure in river basins of the southern Western Ghats, India. Knowl. Manag. Aquat. Ecosyst., 412, 111.Google Scholar
Shimano, Y., Cabette, H.S.R., Salles, F.F. and Juen, L., 2010. Composição e distribuição da fauna de Ephemeroptera (Insecta) em área de transição Cerrado-Amazônia, Brasil. Iheringia, Sér. Zool., 100, 301308.CrossRefGoogle Scholar
Shimano, Y., Salles, F.F., Faria, L.R.R., Cabette, H.S.R. and Nogueira, D.S., 2012. Distribuição espacial das guildas tróficas e estruturação da comunidade de Ephemeroptera (Insecta) em córregos do Cerrado de Mato Grosso, Brasil. Iheringia, Sér. Zool., 102, 187196.CrossRefGoogle Scholar
Shimano, Y., Juen, L., Salles, F.F., Nogueira, D.S. and Cabette, H.S.R., 2013a. Environmental and spatial processes determining Ephemeroptera (Insecta) structures in tropical streams. Ann. Limnol. - Int. J. Lim., 49, 3141.CrossRefGoogle Scholar
Shimano, Y., Salles, F.F. and Juen, L., 2013b. Study of the mayfly order Ephemeroptera (Insecta) in Brazil: a scienciometric review. Rev. Bras. Entomol., 57, 359364.CrossRefGoogle Scholar
Silva, D.P., De Marco, P. and Resende, D.C., 2010. Adult odonate abundance and community assemblage measures as indicators of stream ecological integrity: a case study. Ecol. Indic., 10, 744752.CrossRefGoogle Scholar
Silva-Pinto, N., Juen, L., Cabette, H.S.R. and De Marco, P. Jr. 2012. Fluctuating asymmetry and wing size of argia tinctipennis Selys (Zygoptera: Coenagrionidae) in relation to riparian forest preservation status. Neotrop. Entomol., 41, 178185.CrossRefGoogle Scholar
Souza, H.M.S., Cabette, H.S.R. and Juen, L., 2011. Baetidae (Insecta, Ephemeroptera) em córregos do cerrado matogrossense sob diferentes níveis de preservação ambiental. Iheringia, Sér. Zool., 101, 181190.CrossRefGoogle Scholar
Strahler, H.N., 1957. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union, 38, 913920.CrossRefGoogle Scholar
Suga, C.M. and Tanaka, M.O., 2013. Influence of a forest remnant on macroinvertebrate communities in a degraded tropical stream. Hydrobiologia, 703, 203213.CrossRefGoogle Scholar
Tate, C.M. and Heiny, J.S., 1995. The ordination of benthic invertebrate communities in the South Platte River Basin in relation to environmental factors. Freshwater Biol., 33, 439154.CrossRefGoogle Scholar
Thorp, J.H., Thoms, M.C. and Delong, M.D., 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River. Res. Appl., 147, 123147.CrossRefGoogle Scholar
Thorp, J.H., Martin, C. and Thoms, M.D.D., 2008. The Riverine Ecosystem Synthesis: Cohesiveness. Toward Conceptual, Elsevier, Amsterdam.Google Scholar
Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R. and Cushing, C.E., 1980. The River Continuum Concept. Can. J. Fish. Aquat. Sci., 37, 130137.CrossRefGoogle Scholar
Wahl, C.M., Neils, A. and Hooper, D., 2013. Impacts of land use at the catchment scale constrain the habitat benefits of stream riparian buffers. Freshw. Biol., 58, 23102324.Google Scholar
Warfe, D.M., Barmuta, L.A. and Wotherspoon, S., 2008. Quantifying habitat structure: surface convolution and living space for species in complex environments. Oikos, 117, 17641773.CrossRefGoogle Scholar
Whittaker, R.J., Araújo, M.B., Jepson, P., Ladle, R.J. and Watson, J.E.M.W., 2005. Conservation Biogeography: assessment and prospect. Divers. Distrib., 11, 323.CrossRefGoogle Scholar
Xu, M., Wang, Z., Duan, X. and Pan, B., 2014. Effects of pollution on macroinvertebrates and water quality bio-assessment. Hydrobiol., 729, 247259. CrossRefGoogle Scholar
Yoshimura, M., 2012. Effects of forest disturbances on aquatic insect assemblages. Entomol. Sci., 15, 145154.CrossRefGoogle Scholar
Zar, J.H., 2010. Biostatistical Analysis, Pearson, London.Google Scholar
Zweig, L.D. and Rabeni, C.F., 2001. Biomonitoring for deposited sediment using benthic invertebrates: a test on 4 Missouri streams. J. N Am. Benthol. Soc., 20, 643657.CrossRefGoogle Scholar