Published online by Cambridge University Press: 01 December 2011
Vineyards are a dominant feature of many landscapes in Mediterranean-climate regions. We examined the effects of streamflow declines, associated with vineyard water-withdrawals for frost protection, on benthic-macroinvertebrate communities at three sites along three small streams in the Mediterranean-climate region of Northern California. One site was heavily affected by water withdrawals for frost protection, the other two were not. In addition, we examined relationships between vineyard coverage and benthic-macroinvertebrate community response using data from 59 sampling events at 39 sites along 35 small streams in Napa County, California. We tested three a priori hypotheses in terms of the response of biological traits of benthic macroinvertebrates to high vineyard coverage: (1) proportion of individuals with semi-voltine (i.e., one generation every 2 years) life cycles would be lower compared to those with uni- and multi-voltine cycles, (2) proportion of individuals able to undergo diapause would be higher, and (3) proportion of individuals with the ability to burrow into the substrate would be higher. In the three-site study, we found that vineyard water-withdrawals for frost protection coincided with consistently lower values in both the benthic-macroinvertebrate index of biotic integrity (B-IBI) developed for Northern California streams and the ratio of Ephemeroptera–Plecoptera–Trichoptera to Odonata–Coleoptera–Hemiptera individuals (EPT/OCH), a metric developed for European Mediterranean streams. In the broader-scale study, we observed that vineyard-coverage levels above about 20% coincided with lower values of the B-IBI. The semi-voltine life-cycle trait was lower above this level, whereas the diapause and burrowing traits were not affected.