Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T08:14:35.879Z Has data issue: false hasContentIssue false

Environmental and spatial processes determining Ephemeroptera (Insecta) structures in tropical streams

Published online by Cambridge University Press:  18 April 2013

Yulie Shimano*
Affiliation:
Programa de Pós-Graduação em Zoologia, Universidade Federal do Pará, Rua Augusto Correia, no 1 Bairro Guama, 66.075-110, Belém, PA, Brazil
Leandro Juen
Affiliation:
Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correia, no 1 Bairro Guamá, 66.075-110, Belém, PA, Brazil
Frederico Falcão Salles
Affiliation:
Departamento de Ciências Agrárias e Biológicas, Universidade Federal de Espírito Santo, Centro Universitário Norte do Espírito Santo, São Mateus, ES, Brazil
Denis Silva Nogueira
Affiliation:
Programa de Pós-Graduação em Ecologia e Evolução, Universidade Federal do Goiás, Goiânia, GO, Brazil
Helena Soares Ramos Cabette
Affiliation:
Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Nova Xavantina, MT, Brazil
*
*Corresponding author: yulie.bio@gmail.com
Get access

Abstract

Community diversity is expected to reflect variations in local conditions but, recently, ecologists have started to realize that local diversity is also under pressure from global processes. As a result, the traditional view of community structure based on local interspecific interactions was replaced by the idea that community structure is a result of multiple processes acting in different spatial scales. This study is aimed at quantifying the relative importance of spatial, environmental and spatially structured processes on Ephemeroptera community in Cerrado streams in Brazil. Thirty-four rivers and streams in the Brazilian state Mato Grosso were sampled. Ephemeroptera species composition, based on abundance and presence data, was evaluated in relation to niche and neutral predictors by using a partial redundancy analysis (pRDA). Results obtained through the pRDA indicated that both environmental and spatial processes influenced Ephemeroptera abundance. On the other hand, only environmental processes showed effects on community patterns when using species presence data from preserved, altered and large streams and also when looking only at the preserved sites. When streams larger than 20 m were excluded from analysis, both environmental and spatially processes showed influence on Ephemeroptera composition. Adjusted R2 values were higher for environmental than for spatial processes in all analyses. The relatively high influence of both environmental processes and stream width in the analyses highlights the sensitivity of mayflies assemblies to environmental variation, and emphasizes the importance of local processes, as predicted by niche theory, while neutral processes act to a lesser extent on the structure of the studied communities.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, P.B., HilleRisLambers, J. and Levine, J.M., 2007. A niche for neutrality. Ecol. Lett., 10, 95104.CrossRefGoogle ScholarPubMed
Alonso, D., Etienne, R.S. and Mckane, A.J., 2006. The merits of neutral theory. Tree, 21, 451457.Google ScholarPubMed
Austin, M.P., Nicholls, A.O. and Margules, C.R., 1990. Measurement of the realized qualitative niche: environmental niches of five eucalyptus species. Ecol. Monogr., 60, 161177.CrossRefGoogle Scholar
Bispo, P.C., Oliveira, L.G., Bini, L.M. and Souza, K.D., 2006. Ephemeroptera, Plecoptera and Trichoptera assemblages from riffles in mountain streams of centralBrazil: environmental factors influencing the distribution and abundance of immature. Braz. J. Biol., 66, 611622.CrossRefGoogle Scholar
Borcard, D. and Legendre, P., 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbor matrices. Ecol. Model., 153, 5168.CrossRefGoogle Scholar
Borcard, D., Legendre, P. and Drapeau, P., 1992. Partialling out the spatial component of ecological variation. Ecology, 73, 10451055.CrossRefGoogle Scholar
Brasil, , 1983. Projeto RADAMBRASIL, Folha SD 22. Goiás: geologia, geomorfologia, pedologia, vegetação, uso potencial da terra. Ministério das Minas e Energia/Divisão de Publicação.
Brittain, J.E., 1982. Biology of mayflies. Annu. Rev. Entomol., 27, 119147.CrossRefGoogle Scholar
Buss, D.F. and Salles, F.F., 2007. Using Baetidae species as biological indicators of environmental degradation in a Brazilian river basin. Environ. Monit. Assess., 130, 365372.CrossRefGoogle Scholar
Buss, D.F., Baptista, D.F., Silveira, M.P., Nessimian, J.L. and Dorvillé, L.F.M., 2002. Influence of water chemistry and environmental degradation on macroinvertebrate assemblages in a river basin in south-eastBrazil. Hydrobiologia, 481, 125136.CrossRefGoogle Scholar
Cabette, H.S.R., Giehl, N.F., Dias-Silva, K., Luen, L. and Batista, J.D., 2010. Distribuição de Nepomorpha e Gerromorpha (Insecta: Heteroptera) da Bacia Hidrográfica do Rio Suiá-Miçu, MT: Riqueza relacionada à qualidade do hábitat. In: Santos, J.E., Galbiati, C. and Moschini, L.E. (eds.), Gestão e educação ambiental, água, biodiversidade e cultura, Rima, São Carlos, 113137.Google Scholar
Case, T.J., 1981. Niche packing and coevolution in competition communities. Proc. Natl. Acad. Sci. U.S.A., 78, 50215025.CrossRefGoogle ScholarPubMed
Case, T.J. and Gilpin, M.E., 1974. Interference competition and Niche theory. Proc. Natl. Acad. Sci. U.S.A., 71, 30733077.CrossRefGoogle ScholarPubMed
Cassemiro, F.A.Z. and Padial, A.A., 2008. Teoria Neutra da Biodiversidade e biogeografia: aspectos teóricos, impactos na literatura e perspectivas. Oecol. Bras., 12, 706719.CrossRefGoogle Scholar
Chase, J.M., 2003. Community assembly: when should history matter? Oecologia, 136, 489498.CrossRefGoogle ScholarPubMed
Chave, J., 2004. Neutral theory and community ecology. Ecol. Lett., 7, 241253.CrossRefGoogle Scholar
Clements, W.H., Carlise, D.M., Courtney, L.A. and Harrahy, E.A., 2002. Integrating observational and experimental approaches to demonstrate causation in stream biomonitoring studies. Environ. Toxicol. Chem., 21, 11381146.CrossRefGoogle ScholarPubMed
Corigliano, M.C., Gualdoni, C.M., Oberto, A.M. and Raffaini, G.B., 2001. Longitudinal distribution of the mayfly (Ephemeroptera) communities at the Chocancharava River Basin (Córdoba, Argentina). In: Dominguez, E. (ed.), Trends in Research in Ephemeroptera and Plecoptera, Kluwer Academic/plenum Publishers, Tucuman, 8995.CrossRefGoogle Scholar
De Marco, P., 2006. Um longo caminho até uma teoria unificada para a ecologia. Oecol. Bras., 10, 120126.CrossRefGoogle Scholar
Dias, L.G., Molineri, C. and Ferreira, P.S.F., 2007. Ephemerelloidea (Insecta: Ephemeroptera) do Brasil. Pap. Avulsos de Zool., 47, 213244.Google Scholar
Dias-Silva, K., Cabette, H.S.R., Juen, L. and De Marco, P., 2010. The influence of habitat integrity and physical-chemical water variables on the structure of aquatic and semi-aquatic Heteroptera. Zoologia, 27, 918930.CrossRefGoogle Scholar
Diniz-Filho, J.A.F. and Bini, L.M., 2005. Modelling geographical patterns in species richness using eigenvector-based spatial filters. Global Ecol. Biogeogr., 14, 177185.CrossRefGoogle Scholar
Domínguez, E., Molineri, C., Pescador, M.L., Hubbard, M. and Nieto, C., 2006. Ephemeroptera of South America. Pensoft, Moscow, 646.Google Scholar
Francischetti, C.N., Da-Silva, E.R., Salles, F.F. and Nessimian, J.L., 2004. A ephemeropterofauna (Insecta: Ephemeroptera) do trecho ritral inferior do Rio Campo Belo, Itatiaia, RJ: composição e mesodistribuição. Lundiana, 5, 3339.Google Scholar
Gauch, H.G., 1982. Multivariate Analysis in Community Ecology, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Gotelli, N.J., Colwell, R.K., 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett., 4, 379391.CrossRefGoogle Scholar
Goulart, M. and Callisto, M., 2005. Mayfly diversity in the Brazilian tropical headwaters of Serra do Cipó. Braz. Arch. Biol. Technol., 48, 983996.CrossRefGoogle Scholar
Gravel, D., Canham, C.D., Beaudet, M. and Messier, C., 2006. Reconciling niche and neutrality: the continuum hypothesis. Ecol. Lett., 9, 399409.CrossRefGoogle ScholarPubMed
Hawkins, B.A., Diniz-Filho, J.A.F., Jaramillo, C.A. and Soeller, S.A., 2007. Climate, niche conservatism, and the global bird diversity gradient. Am. Nat., 170, 1627.CrossRefGoogle ScholarPubMed
Hayhoe, S.J., Neill, C., Porder, S., McHorney, R., Lefebvre, P., Coe, M.T., Elsenbeer, H. and Krusche, V. 2011. Conversion to soy on the Amazonian agricultural frontier increases streamflow without affecting stormflow dynamics. Global Change Biol., 17, 18211833.CrossRefGoogle Scholar
Heino, J., 2005. Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams. J. Freshwater Biol., 50, 15781587.CrossRefGoogle Scholar
Heino, J., Muotka, T. and Paavola, R., 2003. Determinants of macroinvertebrate diversity in headwater streams: regional and local influences. J. Anim. Ecol, 72, 425434.CrossRefGoogle Scholar
Heino, J., Parviainen, J., Paavola, R., Jehle, M., Louhi, P. and Muotka, T., 2005. Characterizing macroinvertebrate assemblage structure in relation to stream size and tributary position. Hydrobiologia, 539, 121130.CrossRefGoogle Scholar
Heino, J., Bini, L.M., Karjalainen, S.M., Mykra, H., Soininen, J., Vieira, L.C.G. and Diniz-Filho, J.A.F., 2010. Geographical patterns of micro-organismal community structure: are diatom ubiquitously distributed across boreal streams? Oikos, 119, 129137.CrossRefGoogle Scholar
Hill, M.O. and Gauch, H.G., 1980. Detrended correspondence analysis, an improved ordination technique. Vegetation, 42, 4758.CrossRefGoogle Scholar
Hubbell, S.P., 2001. The unified neutral theory of Biodiversity and Biogeography, Princeton University Press, Princeton, 448 p.Google Scholar
Hutchinson, G.E., 1957. Population studies – animal ecology and demography: concluding remarks. Cold Spring Harbor Symp. Quant. Biol., 22, 415427.CrossRefGoogle Scholar
Kovats, Z.E., Ciborowsky, J.J.H. and Corkum, L.D., 1996. Inland dispersal of adult aquatic insects. Freshwater Biol., 36, 265276.CrossRefGoogle Scholar
Landeiro, V.L., Magnusson, W.E., Melo, A.S., Espírito-Santo, H.M.V., Bini, L.M., 2011. Spatial eigenfunction analyses in stream networks: do watercourse and overland distances produce different result? Freshwater Biol., 56, 11841192.CrossRefGoogle Scholar
Legendre, P. and Gallagher, E.D., 2001. Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271280.CrossRefGoogle ScholarPubMed
Legendre, P. and Legendre, L., 1998. Numerical Ecology, Elsevier Science B.V., Amsterdam, 853 p.Google Scholar
Lloyde, N.J., MacNally, R. and Lake, P.S., 2005. Spatial autocorrelation of assemblages of benthic invertebrates and its relationship to environmental factors in two upland rivers in southeastern Australia. Divers. Distrib., 11, 375386.CrossRefGoogle Scholar
Lloyde, N.J., Mac Nally, R., Lake, P.S., 2006. Spatial scale of autocorrelation of assemblages of benthic invertebrates in two upland rivers in South-eastern Australia and its implications for biomonitoring and impact assessment in streams. Environ. Monit. Assess., 115, 6985.CrossRefGoogle Scholar
Marimon, B.S., Lima, E.S., Duarte, T.G., Chieregatto, L.C. and Ratter, J.A., 2006. Observations on the vegetation of northearstern Mato Grosso, Brazil. IV. An analysis of the Cerrado-Amazonian Forest Ecotone. Edin. J. Bot., 63, 323341.CrossRefGoogle Scholar
McCafferty, W.P., 1983. Aquatic entomology: the Fishermen's and Ecologists’ Illustrated Guide Insects and their Relatives, Jones and Bartlett Publishers, London.Google Scholar
McGill, B.J., Maurer, B.A. and Weiser, M.D., 2006. Empirical evaluation of neutral theoretical. Ecology, 87, 14111423.CrossRefGoogle Scholar
Nessimian, J.L., Venticinque, E.M., Zuanon, J., De Marco, P., Gordo, M., Fidelis, L., Batista, J.D. and Juen, L., 2008. Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams. Hydrobiologia, 10.1007, 112.Google Scholar
Paller, M.H., Specht, W.L. and Dyer, S.A., 2006. Effects of stream size on taxa richness and other commonly used benthic bioassessment metrics. Hydrobiologia, 568, 309316.CrossRefGoogle Scholar
Pell, M.C., Finlayson, B.L. and McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644.CrossRefGoogle Scholar
Poff, N.L., DeCino, R.D. and Ward, J.V., 1991. Size-dependent drift responses of mayflies to experimental hydrologic variation: active predator avoidance of passive hydrodynamic displacement? Oecologia, 88, 577586.CrossRefGoogle ScholarPubMed
Popielarz, P.A. and Neal, Z.P., 2007. The niche as a theoretical toll. Annu. Rev. Sociol., 33, 6584.CrossRefGoogle Scholar
Ramette, A. and Tiedje, J.M., 2007. Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proc. Natl. Acad. Sci. U.S.A., 104, 27612766.CrossRefGoogle Scholar
Rangel, T.F.L.B., Diniz-Filho, J.A.F. and Bini, L.M., 2006. Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global Ecol. Biogeogr., 15, 321327.CrossRefGoogle Scholar
Rangel, T.F.L.V.B., Diniz-Filho, J.A.F. and Bini, L.M., 2010. SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography, 33, 4650.CrossRefGoogle Scholar
Ratter, J.A., Askew, G.P., Montgomery, R.F. and Gifford, D.R., 1978. Observations on the vegetation of northeastern Mato Grosso II.Forest and Soils of the Rio Suiá–Miçu area. Proc. R. Soc. Lond.  B Biol. Sci., 293, 191208.CrossRefGoogle Scholar
Ricklefs, R.E., 1987. Community diversity: relative roles of local and regional processes. Science, 235, 167171.CrossRefGoogle ScholarPubMed
Ricklefs, R.E. and Schluter, D., 1993. Species diversity: regional and historical influences. In: Ricklefs, R.E. and Schluter, D. (eds.), Species Diversity in Ecological Communities, University of Chicago Press, Chicago, 350363.Google Scholar
Rios, R.I., 2004. A Teoria do Nicho Ecológico: Benefícios e malefícios. In: Coelho, A.S., Loyola, R.D. and Souza, M.B.G. (eds.), Ecologia teórica: desafios para o aperfeiçoamento da ecologia no Brasil, O lutador, Belo Horizonte, 2444.Google Scholar
Rosenberg, D.M. and Resh, V.H., 1993. Introduction to freshwater biomonitoring and benthic macroinvertebrates. In: Rosenberg, D.M. and Resh, V.H. (eds.), Freshwater biomonitoring and benthic macroinvertebrates, Chapman and Hall, New York, 19.Google Scholar
Rossete, A.N., 2008. Componente: meio físico e uso atual da terra. In: Cabette, H.S.R. (ed.), Uso de indicadores ambientais na gestão de recursos hídricos na Bacia Hidrográfica do Rio Pindaíba – MT, Editora Unemat, Nova Xavantina, 121.Google Scholar
Salles, F.F., Da-Silva, E.R., Hubbard, M.D. and Serrão, J.E., 2004. As espécies de Ephemeroptera (Insecta) registradas para o Brasil. Biota Neotrop., 4, 134.Google Scholar
Sattler, T., Borcard, D., Arlettaz, R., Bontadina, F., Legendre, P., Obrist, M.K., Morreti, M., 2010. Spider, bee, and bird communities in cities are shaped by environmental control and high stochasticity. Ecology, 91, 33433353.CrossRefGoogle ScholarPubMed
Scarano, F.R. and Dias, A.T., 2004. A importância de espécies no funcionamento de comunidades e ecossistemas. In: Coelho, A.S., Loyola, R.D. and Souza, M.B.G. (eds.), Ecologia teórica: desafios para o aperfeiçoamento da ecologia no Brasil, O Lutador, Belo Horizonte, 3246.Google Scholar
Schwartzman, S. and Zimmerman, B., 2005. Conservation alliances with indigenous people of the Amazon. Conserv. Biol., 19, 721727.CrossRefGoogle Scholar
Shimano, Y., Cabette, H.S.R., Salles, F.F. and Juen, L., 2010. Composição e distribuição da fauna de Ephemeroptera (Insecta) em áreas de transição Cerrado-Amazônia, Brasil. Iheringia, 100, 18.CrossRefGoogle Scholar
Siegloch, A.E., Froehlich, C.G. and Kotzian, C.B., 2008. Composition and diversity of Ephemeroptera (Insecta) nymph communities in the middle section of the Jacuí River and some tributaries, southern Brazil. Iheringia, 98, 425432.CrossRefGoogle Scholar
Sode, A. and Wiberg-Larsen, P., 1993. Dispersal of adult Trichoptera at a Danish forest brook. Freshwater Biol., 30, 439446.CrossRefGoogle Scholar
Souza, H.M.L., Juen, L. and Cabette, H.S.R., 2010. Diversidade beta de Baetidae (Ephemeroptera) em córregos da Bacia Hidrográfica do Rio Pindaíba (MT). In: Santos, J.E., Galbiati, C. and Moschini, L.E. (eds.), Gestão e educação ambiental, água, biodiversidade e cultura, Rima, São Carlos, 109123.Google Scholar
Strahler, H.N., 1957. Quantitative analysis of watershed geomorphology. Am. Geophys. Union, 38, 913920.CrossRefGoogle Scholar
Thompson, R. and Towsend, C., 2006. A truce with neutral theory: local deterministic factors, species traits and dispersal limitation together determine patterns of diversity in streams invertebrates. J. Anim. Ecol., 75, 476484.CrossRefGoogle ScholarPubMed
Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R. and Cushing, C.E., 1980. The river continuum concept. Can. J. Fish. Aquat. Sci., 37, 130137.CrossRefGoogle Scholar
Vanschoenwinkel, B., De Vries, C., Seaman, M. and Brendonck, L., 2007. The role of metacommunity processes in shaping invertebrate rock pool communities along a dispersal gradient. Oikos, 116, 12551266.CrossRefGoogle Scholar
Vergnon, R., Dulvy, N.K. and Freckleton, R.P., 2009. Niches versus neutrality: uncovering the drivers of diversity in a species-rich community. Ecol. Lett., 12, 10791090.CrossRefGoogle Scholar
Vison, M.R. and Hawkins, C.P., 1998. Biodiversity of stream insects: variation at local, basin and regional scales. Annu. Rev. Entomol., 43, 271193.CrossRefGoogle Scholar
Volkov, I., Banavar, J.R., Hubbell, S.P. and Maritan, A., 2003. Neutral theory and relative species abundance in ecology. Nature, 424, 10351037.CrossRefGoogle ScholarPubMed
Zar, J.H., 1990. Biostatistical analysis. Prentice-Hall, New York, 944 p.Google Scholar