Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T11:08:58.421Z Has data issue: false hasContentIssue false

Environmental factors – spatial and temporal variation of chironomid communities in oceanic island streams (Azores archipelago)

Published online by Cambridge University Press:  21 December 2011

Pedro Miguel Raposeiro*
Affiliation:
Research Center in Biodiversity and Genetic Resources (CIBIO) – Açores, and Biology Department, University of Azores, Rua Mãe de Deus 13A, 9501-855 Ponta Delgada, Açores, Portugal
Ana Cristina Costa
Affiliation:
Research Center in Biodiversity and Genetic Resources (CIBIO) – Açores, and Biology Department, University of Azores, Rua Mãe de Deus 13A, 9501-855 Ponta Delgada, Açores, Portugal
Samantha Jane Hughes
Affiliation:
Centre for the Research and Technology of Agro-Environment and Biological Sciences, University of Trás-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real, Portugal
*
*Corresponding author: raposeiro@uac.pt
Get access

Abstract

Freshwater systems on volcanic oceanic islands have very particular characteristics as a result of their geological origins, relatively small size, distances from source areas for colonizers, and distinct catchment morphology. These factors result in freshwater communities that are clearly distinct from continental systems. Chironomid spatial and temporal distribution was investigated in chironomid assemblages at 21 sites across the Azores Archipelago. Results using PERMANOVA, a permutational multivariate analysis of variance, indicated significant longitudinal differences in assemblages but none between islands or over time.

Links between hydromorphological and physicochemical variables and the community assemblage were assessed using DISTLM, a linear model for distance-based multivariate analysis. The percentage of variation explained by hydromorphological factors (31%) was slightly higher than that explained by physicochemical (28%) factors. Descriptors of land use (forest area, scrub area, natural area of catchment) and stream slope were found to be the best environmental predictors of chironomid assemblages in Azores. Physicochemical variables such as temperature, pH, nitrite, iron and conductivity were the principal drivers of change in chironomid composition in stream locations. Headwater sites, characterized by lower temperature, acid to neutral pH values, low conductivity, nutrient and metal concentrations were dominated by Rheocricotopus atripes. Mid-section sites, located in agricultural areas were dominated by Thienemanniella clavicornis. Urbanized lower reaches were characterized by higher temperature, pH, conductivity and nutrient levels and were dominated by Cricotopus sp. These results give essential information that allows us to predict the response of different chironomid species to hydromorphological and physicochemical gradients across the archipelago's streams contributing providing the basis for the development of tools for the implementation of the Water Frame Directive.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N. and Csake, F. (eds.), Second International Symposium on Information Theory, Akademiai Kiado, Budapest, 267281.Google Scholar
Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control , AC-19, 716723.CrossRefGoogle Scholar
Allan, J.D., 2004. Landscapes and riverscapes: The Influence of Land Use on Stream Ecosystems. Annu. Rev. Ecol. Syst. , 35, 257284.CrossRefGoogle Scholar
Allan, J.D. and Flecker, A.S., 1993. Biodiversity conservation in running waters. Identifying the major factors that threaten destruction of riverine species and ecosystems. BioScience , 43, 3243.CrossRefGoogle Scholar
Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol. , 35, 3246.Google Scholar
Anderson, M.J. and Braak, C.J.F., 2003. Permutations test for multi-factorial analysis of variance. Journal of Statistical Computation and Simulation , 73, 85113.CrossRefGoogle Scholar
Anderson, M.J., Gorley, R.N. and Clarke, K.R., 2008. PERMANOVA+for PRIMER: Guide to Software and Statistical Methods, PRIMER-E, Plymouth, UK, 214.Google Scholar
Anderson, M.J. and Robinson, J., 2003. Generalized discriminant analysis based on distances. Aust. N. Z. J. Stat. , 45, 301318.CrossRefGoogle Scholar
Armitage, P., Cranston, P.S.V. and Pinder, L.C.V., 1995a. The Chironomidae - The biology and ecology of non-biting midges, Chapman & Hall, London, xii+572.Google Scholar
Armitage, P.D., Blackburn, J.H., Malmqvist, B. and Nilsson, A.N., 1994. Chironomidae in freshwater habitats in Tenerife, Canary Islands. In: Cranston, P.S. (ed.), Chiromonids from genes to ecosystems, CSIRO publications, Melbourne, 379388.Google Scholar
Armitage, P.D., Blackburn, J.H., Nilsson, A.N. and Malmqvist, B., 1995b. Chironomidae in freshwater habitats in Tenerife, Canary Islands. In: Peter, C. (ed.), Chironomids. From Genes to Ecosystems, CSIRO, Australia, 379388.Google Scholar
Armitage, P.D., Moss, D., Wright, J.F. and Furse, M.T., 1983. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Res. , 17, 333347.CrossRefGoogle Scholar
Ashe, P., Murray, D.A. and Reiss, F., 1987. The zoogeographical distribution on Chironomidae. Ann. Limnol. , 23, 2760.CrossRefGoogle Scholar
Bêche, L.A., Macelravy, E.P. and Resh, V.H., 2006. Long-term seasonal variation in the biological traits of benthic-macroinvertebrates in two Mediterranean climate streams in California, U.S.A. Freshwat. Biol. , 51, 5675.CrossRefGoogle Scholar
Bettencourt, M.L., 1979. O clima dos Açores como recurso natural na aplicação especialmente em agricultura e indústria do turismo, Instituto Nacional de Meteorologia e Geofísica, Lisboa, 63.Google Scholar
Bilton, D.T., Freeland, J.R. and Okamura, B., 2001. Dispersal in freshwater invertebrates. Annu. Rev. Ecol. Syst. , 32, 159181.CrossRefGoogle Scholar
Borcard, D., Legendre, P. and Drapeau, P., 1992. Partialling out the spatial component of ecological variation. Ecology , 73, 10431055.CrossRefGoogle Scholar
Borges, P.a.V., 2005. Capitulo 2 Descrição da Biodiversidade Terrestre dos Açores. In: Borges, P.a.V., Cunha, R., Gabriel, R., Martins, A.F., Silva, L., Vieira, V., Dinis, F., Lourenço, P., Pinto, N., Cunha, R., Gabriel, R., Martins, A.F., Silva, L. and Vieira, V. (eds.), Listagem da Fauna e Flora (Mollusca e Arthropoda) (Bryophyta, Pteridophyta e Spermamatophyta) Terrestre dos Açores., Projecto Interreg III B (2000–2006) Atlântico, Direcção Regional do Ambiente, Governo Regional dos Açores, Rua Cônsul Dabney, Colónia Alemã, 9900-014, Horta, Faial, 2368.Google Scholar
Borges, P.a.V. and Brown, V.K., 1999. Effect of island geological age on the arthropod species richness of Azorean pastures. Biol. J. Linn. Soc. , 66, 373410.CrossRefGoogle Scholar
Borges, P.a.V., Costa, A., Cunha, R., Gabriel, R., Gonçalves, V., Frias Martins, A.M., Melo, I., Parente, M., Raposeiro, P., Rodrigues, P., R., S.S., Silva, L. and Vieira, V., 2010. Description of the terrestrial and marine Azorean biodiversity. In: Borges, P.a.V., Costa, A., Cunha, R., Gabriel, R., Gonçalves, V., Frias Martins, A.M., Melo, I., Parente, M., Raposeiro, P., Rodrigues, P., R., S.S., Silva, L. and Vieira, V. (eds.), A list of the terrestrial and marine biota from the Azores, Principia, Cascais, 933.Google Scholar
Brasher, A.M.D., 2003. Impacts of Human Disturbances on Biotic Communities in Hawaiian Streams. BioScience , 53, 10521060.CrossRefGoogle Scholar
Burnham, K.P. and Anderson, D.R., 2004. Multimodel inference: understanding AIC and BIC in model selection. Soc. Method. Res. , 33, 261304.CrossRefGoogle Scholar
Calle-Martínez, D. and Casas, J.J., 2006. Chironomid species, stream classification, and water-quality assessment: the case of 2 Iberian Mediterranean mountain regions. J. N. Am. Benthol. Soc. , 25, 465476.CrossRefGoogle Scholar
Clarke, K.R. and Gorley, R.N., 2001, PRIMER v5: User manual/tutorial. Plymouth, UKPRIMER-E, 91 pp.Google Scholar
Clarke, K.R. and Gorley, R.N., 2006, PRIMER v6: User manual/tutorial. PRIMER-E, Plymouth, UK, 115 pp.Google Scholar
Clarke, K.R. and Green, R.H., 1988. Statistical design and analysis for a ‘biological effects’ study. Mar Ecol Prog Ser , 46, 213226.CrossRefGoogle Scholar
Coffman, W.P., 1973. Energy flow in a woodland stream ecosystem. The taxonomic composition and phenology of the Chironomidae as determined by the collection of pupal exuviae. Archiv für Hydrobiolie , 71, 281322.Google Scholar
Coffman, W.P., 1989. Factors that determine the species richness of lotic communities of Chironomidae. Acta Biologica Debrecina, Suppl. Oecologica Hungarica , 3, 95100.Google Scholar
Coffman, W.P., 1995. 18 Conclusions. In: Armitage, P.D., Cranston, P.S. and Pinder, L.C.V. (eds.), The Chironomidae: Biology and ecology of non-biting midges., Chapman & Hall, London, 436572.CrossRefGoogle Scholar
Connell, J.H., 1978. Diversity in Tropical Rain Forests and Coral Reefs. Science , 199, 13021310.CrossRefGoogle ScholarPubMed
Covich, A.P., 2006. Dispersal-limited biodiversity of tropical insular streams. Polish J. Ecol. , 54, 523547.Google Scholar
Covich, A.P., 2009. Freshwater ecology. In: Gillespie, R.G. and Clague, D.A. (eds.), Encyclopedia of islands, University of California Press, Berkeley, 343347.Google Scholar
Cowie, R.H. and Brenden, S.H., 2006. Dispersal is fundamental to biogeography and the evolution of biodiversity on oceanic islands. J. Biogeogr. , 33, 193198.CrossRefGoogle Scholar
Cruz, J.V., 2003. Groundwater and volcanoes: examples from the Azores archipelago. Environ. Geol. , 44, 343355.CrossRefGoogle Scholar
Davies, L.J. and Hawkes, H.A., 1981. Some effects of organic pollution on the distribution and seasonal incidence of Chironomidae in riffles in the River Cole. Freshwat. Biol. , 11, 549559.CrossRefGoogle Scholar
Delettre, Y.R., 1995. Heathland fires temporarily increase species diversity: an example in terrestrial Chironomidae (Diptera). Landscape Urban Plann. , 31, 259268.CrossRefGoogle Scholar
Díaz, A.M., Alonso, M.L.S. and Gutiérrez, M.R.V.-A., 2008. Biological traits of stream macroinvertebrates from a semi-arid catchment: patterns along complex environmental gradients. Freshwat. Biol. , 53, 121.Google Scholar
Dimitriadis, S. and Cranston, P.S., 2007. From the mountains to the sea: assemblage structure and dynamics in Chironomidae (Insecta: Diptera) in the Clyde River estuarine gradient, New South Wales, south-eastern Australia. Aust. J. Entomol. , 46, 188197.CrossRefGoogle Scholar
DROTRH, and INAG, 2001. Plano Regional da Água. Relatório Técnico. Versão para Consulta Pública, Direcção Regional do Ordenamento do Território e dos Recursos Hídricos e Instituto da Água, Ponta Delgada, 414.Google Scholar
European P. and The Council of the European U., 2000. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy. OJEC, 327, 172.Google Scholar
Feld, C.K. and Hering, D., 2007. Community structure or function: effects of environmental stress on benthic macroinvertebrates at different spatial scales. Freshwat. Biol. , 52, 13801399.CrossRefGoogle Scholar
Ferrington, L.C., Blackwood, M.A., Wright, C.A., Crisp, N.H., Kavanaugh, J.L. and Schmidt, F.J., 1991. A Protocol for Using Surface-Floating Pupal Exuviae of Chironomidae for Rapid Bioassessment of Changing Water Quality. In: Publication, I. (ed.), Sediment and Stream Water Quality in a Changing Environment: Trends and Explanations, Vienna, 181190.Google Scholar
Freeman, P., 1959. Chironomidae (Diptera, Nematocera) from Azores and Madeira. Bol. Mus. Mun. Funchal , 12, 515.Google Scholar
Frey, R., 1945. Tiergeographische Studieb uber die Dipteren-fauna der Azorean. I. Verzeichnis der bisher von den Azoren bekannten Dipteren. Societas Scientiarum Fennica. Commentationes Biologicae , VIII, 1114.Google Scholar
Gendron, J.M. and Laville, H., 1995. Biodiversity and sampling frequency of the pupal exuviae of Chironomidae (Diptera) in a 4th order river. Archiv für Hydrobiologie , 135, 243257.CrossRefGoogle Scholar
Giller, P.S. and Malmqvist, B., 1998. The Biology of Streams and Rivers, Oxford University Press, Oxford, 296.Google Scholar
Gonçalves, V., Raposeiro, P. and Costa, A.C., 2008. Benthic diatoms and macroinvertebrates in the assessment of the ecological status of Azorean streams. Limnetica , 27, 317328.CrossRefGoogle Scholar
Harding, J.S., Benfield, E.F., Bolstad, P.V., Helfman, G.S. and Jones, E.B.D., 1998. Stream biodiversity: the ghost of land use past. Proceedings of the Natural Academy of Science U.S.A. , 95.Google ScholarPubMed
Hardwick, R.A., Cooper, P.D., Cranston, P.S., Humphrey, C.L. and Dostine, P.L., 1995. Spatial and temporal distribution patterns of drifting pupal exuviae of Chironomidae (Diptera) in streams of tropical northern Australia. Freshwat. Biol. , 34, 569578.CrossRefGoogle Scholar
Heino, J., 2000. Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry. Hydrobiologia , 418, 229242.CrossRefGoogle Scholar
Heino, J., 2005. Functional biodiversity of macroinvertebrate assemblages along major ecological gradients of boreal headwater streams. Freshwat. Biol. , 50, 15781587.CrossRefGoogle Scholar
Heino, J. and Paasivirta, L., 2008. Unravelling the determinants of stream midge biodiversity in a boreal drainage basin. Freshwat. Biol. , 53, 884896.CrossRefGoogle Scholar
Hering, D., Johnson, R.K., Kramm, S., Schmutz, S., Szoszkiewicz, K. and Verdonschot, P.F.M., 2006. Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshwat. Biol. , 51, 17571785.CrossRefGoogle Scholar
Hilsenhoff, W.L., 1988. Rapid Field Assessment of Organic Pollution with a Family-Level Biotic Index. J. N. Am. Benthol. Soc. , 7, 6568.CrossRefGoogle Scholar
Hughes, S.J., 2003. A study of the freshwater macroinvertebrate fauna of Madeira and their application in a regional ecological monitoring system. PhD thesis, University of London, UK, 328.Google Scholar
Hughes, S.J., 2005. Application of the Water Framework Directive to Macaronesian freshwater systems. Biology and Environment: Proceedings of the Royal Irish Academy , 105B, 185193.CrossRefGoogle Scholar
Hughes, S.J., 2006. Temporal and spatial distribution patterns of larval trichoptera in Madeiran streams. Hydrobiologia , 553, 2741.CrossRefGoogle Scholar
Hughes, S.J., 2008. Chironomidae (Diptera). In: Borges, P.a.V., Abreu, C., Aguiar, A.M.F., Carvalho, P., Jardim, R., Melo, I., Oliveira, P., Sérgio, C., Serrano, A.R.M. and Vieira, P. (eds.), list of the terrestrial fungi, flora and fauna of Madeira and Selvagens archipelagos, Direcção Regional do Ambiente da Madeira and Universidade dos Açores, Funchal and Angra do Heroísmo, 330331.Google Scholar
Hughes, S.J. and Malmqvist, B., 2005. Atlantic Island freshwater ecosystems: challenges and considerations following the EU Water Framework Directive. Hydrobiologia , 544, 289297.CrossRefGoogle Scholar
Hughes, S.J., Santos, J.M., Ferreira, M.T., Caraça, R. and Mendes, A.M., 2009. Ecological assessment of an intermittent Mediterranean river using community structure and function: evaluating the role of different organism groups. Freshwat. Biol. , 54, 23832400.CrossRefGoogle Scholar
Inoue, E., Kawai, K. and Imabayashi, H., 2005. Species composition and assemblage structure of chironomid larvae (Diptera: Chironomidae) attaching to the artificial substrates in a Japanese temperate basin, in relation to the longitudinal gradient. Hydrobiologia , 543, 119133.CrossRefGoogle Scholar
Kohler, S.L., 1992. Competition and the structure of a benthic stream community. Ecol. Monogr. , 62, 165188.CrossRefGoogle Scholar
Langton, P.G., 1991. A key to Pupal Exuviae of West Palaeartic Chironomidae, Privately published, Huntington, UK, 386.Google Scholar
Langton, P.H. and Visser, H., 2003. Chironomidae exuviae - A key to pupal exuviae of the West Palaearctic Region. Expert Center for Taxonomic Information, Amsterdam.Google Scholar
Legendre, P. and Anderson, M.J., 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. , 69, 124.CrossRefGoogle Scholar
Lindegaard, C. and Brodersen, K., 1995. Distribution of Chironomidae (Diptera) in the River continuum. In: Peter, C. (ed.), Chironomids. From Genes to Ecosystems, CSIRO, Australia, 257271.Google Scholar
Louvat, P. and Allegre, C.J., 1998. Riverine erosion rates on Sao Miguel volcanic island, Azores archipelago. Chem. Geol. , 148, 177200.CrossRefGoogle Scholar
Maasri, A., Fayolle, S., Gandouin, E., Garnier, R. and Franquet, E., 2008. Epilithic chironomid larvae and water enrichment: is larval distribution explained by epilithon quantity or quality? J. N. Am. Benthol. Soc. , 27, 3851.CrossRefGoogle Scholar
Macneil, C., Dick, J.T.A. and Elwood, R.W., 1999. The dynamics of predation on Gammarus spp. (Crustacea: Amphipoda). Biol. Rev. Cam. Philos. Soc. , 74, 375395.Google Scholar
Magalhaes, B., Batalha, D.C. and Collares-Pereira, M.J., 2002. Gradients in stream fish assemblages across a Mediterranean landscape: contributions of environmental factors and spatial structure. Freshwat. Biol. , 46, 10151031.CrossRefGoogle Scholar
Magurran, A.E., 2004. Measuring Biological Diversity, Blackwell Publishing, Oxford, UK, 256.Google Scholar
Malmqvist, B., 2002. Aquatic invertebrates in riverine landscapes. Freshwat. Biol. , 47, 679694.CrossRefGoogle Scholar
Massaferro, J. and Brooks, S.J., 2002. Response of chironomids to Late Quaternary environmental change in the Taitao Peninsula, southern Chile. J. Quatern. Sci. , 17, 101111.CrossRefGoogle Scholar
Mcardle, B.H. and Anderson, M.J., 2001. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology , 82, 290297.CrossRefGoogle Scholar
Mellado, A., 2005. The ecology of stream macroinvertebrate assemblages from the Segura River Basin (SE Spain). Environmental factors, spatio-temporal variability, indicator taxa, diversity trends, biological-ecological traits and applications for bioassessment. PhD Thesis, University of Murcia, Spain.Google Scholar
Milner, A.M. and Petts, G.E., 1994. Glacial rivers: physical habitat and ecology. Freshwat. Biol. , 32, 295307.CrossRefGoogle Scholar
Moore, A.A. and Palmer, M.A., 2005. Invertebrate biodiversity in agricultural and urban headwater streams: implications for conservation and management. Ecol. Appl. , 15, 1169–1117.CrossRefGoogle Scholar
Munné, A. and Prat, N., 2009. Use of macroinvertebrate-based multimetric indices for water quality evaluation in Spanish Mediterranean rivers: an intercalibration approach with the IBMWP index. Hydrobiologia , 628, 203225.CrossRefGoogle Scholar
Murray, D.A., Hughes, S.J., Furse, M.T. and Murray, W.A., 2004. New records of Chironomidae (Diptera: Insecta) from the Azores, Macaronesia. Ann. Limnol. - Int. J. Limnol. , 40, 3342.CrossRefGoogle Scholar
Mykrä, H., Heino, J. and Muotka, T., 2007. Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Global Ecol. Biogeogr. , 16, 149159.CrossRefGoogle Scholar
Oromí, P. and Báez, M., 2001. División Arthropoda. In: Izquierdo, I., Martín, J.L., Zurita, N. and Arechavaleta, M. (eds.), Lista de especies silvestres de Canaries (hongos, plantas y animales terrestres), Consejería de Política Territorial y Medio Ambiente Gobierno das Canarias, 149284.Google Scholar
Osborne, S., Hurrell, S., Simkiss, K. and Leidi, A., 2000. Factors influencing the distribution and feeding of the larvae of Chironomus riparius . Entomol. Exp. Appl. , 94, 6773.CrossRefGoogle Scholar
Peeters, E.T.H.M., Gylstra, R. and Vos, J.H., 2004. Benthic macroinvertebrate community structure in relation to food and environmental variables. Hydrobiologia , 519, 103115.CrossRefGoogle Scholar
Pinder, L.C.V., 1986. Biology of Freshwater Chironomidae. Annu. Rev. Entomol. , 31, 123.CrossRefGoogle Scholar
Punti, T., Rieradevall, M. and Prat, N., 2007. Chironomidae assemblages in reference condition Mediterranean streams: environmental factors, seasonal variability and ecotypes. Fundam. Appl. Limnol. , 170, 149165.CrossRefGoogle Scholar
Punti, T., Rieradevall, M. and Prat, N., 2009. Environmental factors, spatial variation, and specific requirements of Chironomidae in Mediterranean reference streams. J. N. Am. Benthol. Soc. , 28, 247265.CrossRefGoogle Scholar
Quaternaire-Portugal, 2008. O Plano Regional de Ordenamento do Território dos Açores, Secretaria Regional do Ambiente e Mar, Ponta Delgada.Google Scholar
Raposeiro, P., 2010. Chironomidae. In: Borges, P.a.V., Costa, A., Cunha, R., Gabriel, R., Gonçalves, V., Frias Martins, A.M., Melo, I., Parente, M., Raposeiro, P., Rodrigues, P., Santos, R.S., Silva, L. and Vieira, V. (eds.), A list of the terrestrial and marine biota from the Azores, Princípia, Cascais, 234235.Google Scholar
Raposeiro, P.M. and Costa, A.C., 2009. Benthic macroinvertebrate based indices for assessing the ecological status of freshwaters on oceanic islands. Arquipelago - Life Mar. Sci. , 26, 1524.Google Scholar
Raposeiro, P.M., Cruz, A.M. and Hughes, S.J., in press. Azorean freshwater invertebrates: Status, threats and biogeographic notes. Limnetica .Google Scholar
Raposeiro, P.M., Hughes, S.J. and Costa, A.C., 2009. Chironomidae (Diptera: Insecta) in oceanic islands: New records for the Azores and biogeographic notes. Ann. Limnol. - Int. J. Limnol. , 45, 5967.Google Scholar
Raunio, J., Ihaksi, T., Haapala, A. and Muotka, T., 2007a. Within- and among-lake variation in benthic macroinvertebrate communities: comparison of profundal grab sampling and the chironomid pupal exuvial technique. J. N. Am. Benthol. Soc. , 26, 708718.CrossRefGoogle Scholar
Raunio, J., Paavola, R. and Muotka, T., 2007b. Effects of emergence phenology, taxa tolerances and taxonomic resolution on the use of the Chironomid Pupal Exuvial Technique in river biomonitoring. Freshwat. Biol. , 52, 165176.CrossRefGoogle Scholar
Rosenberg, D.M. and Resh, V.H., 1993. Introduction to freshwater biomonitoring and benthic macroinvertebrates. In: Rosenberg, D.M. (ed.), Freshwater Biomonitoring and Benthic Macroinvertebrates., Kluwer, London, 19.Google Scholar
Ruse, L. and Davison, M., 2000. Long-term data assessment of chironomid taxa structure and function in the river Thames. Regul. Rivers: Res. Manage. , 16, 113126.3.0.CO;2-5>CrossRefGoogle Scholar
Ruse, L.P., 1993. Chironomid distribution in the River Pang in relation to environmental variables, University of Bristol, PhD Thesis.Google Scholar
Ruse, L.P., 2000. A simple key to water quality based on chironomid pupal exuviae. In: Hoffrichter, O. (ed.), Late 20th Century Research on Chironomidae: an Anthology from the 13th Internacional Symposium on Chironomidae., Shaker Verlag, Germany, 405413.Google Scholar
Ruse, L.P. and Wilson, R.S., 1995. Long-term assessment of water and sediment quality of the River Thames using Chironomid pupal skins. In: Peter, C. (ed.), Chironomids. From Genes to Ecosystems, CSIRO, Australia, 113124.Google Scholar
Saether, O.A. and Spies, M., 2009. Fauna Europaea: Chironomidae. In: De Jong, H. (ed.), Fauna Europaea: Diptera: Nematocera, Fauna Europaea version 2.1, http://www.faunaeur.org.Google Scholar
Silva, L. and Smith, C.W., 2004. A Characterization of the Non-indigenous Flora of the Azores Archipelago. Biol. Invasions , 6, 193204.CrossRefGoogle Scholar
Soininen, J., Paavola, R. and Muotka, T., 2004. Benthic diatom communities in boreal streams: community structure in relation to environmental and spatial gradients. Ecography , 27.CrossRefGoogle Scholar
Stora, R., 1945. Chironomidae. In: Frey, R. (ed.), Tiergeographische Studien über die Dipterenfauna der Azoren. I Verzeichnes der bisher von der Azoren bekannten Dipteren, Societas Scientarum Fennica. Commentations Biologicae, 1114.Google Scholar
Tokeshi, M., Cranston, P.S. and Pinder, L.C.V., 1995. 10 Life cycles and population dynamics. In: Armitage, P.D. (ed.), The Chironomidae: Biology and ecology of non-biting midges., Chapman & Hall, London, 225268.CrossRefGoogle Scholar
Tolonen, K.T., Hamalaainen, H., Holopainen, I.J. and Karjalainen, J., 2001. Influences of habitat type and environmental variables on littoral macroinvertebrate communities in a large lake system. Archiv fur Hydrobiologie , 152, 3967.CrossRefGoogle Scholar
Townsend, C.R. and Hildrew, A.G., 1994. Species traits in relation to a habitat templet for rivers systems. Freshwat. Biol. , 31, 265275.CrossRefGoogle Scholar
Townsend, C.R., Hildrew, A.G. and Schofield, K., 1987. Persistence of stream invertebrate communities in relation to environmental variability. J. Anim. Ecol. , 56, 597613.CrossRefGoogle Scholar
Vallenduuk, H.J. and Moller Pillot, H.K.M., 2007. Chironomidae Larvae: General ecology and Tanypodinae, KNNV, Budel, 144.CrossRefGoogle Scholar
Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R. and Cushing, C.E., 1980. The River Continuum Concept. Can. J. Fish. Aquat. Sci. , 37, 130137.CrossRefGoogle Scholar
Walter, H.S., 2004. The mismeasure of islands: implications for biogeographical theory and the conservation of nature. J. Biogeogr. , 31, 177197.CrossRefGoogle Scholar
Weijters, M.J., Janse, J.H., Alkemade, R. and Verhoeven, J.T.A., 2009. Quantifying the effect of catchment land use and water nutrient concentrations on freshwater river and stream biodiversity. Aquat. Conserv.: Mar. Freshwat. Ecosyst. , 19, 104112.CrossRefGoogle Scholar
White, J. and Irvine, K., 2003. The use of littoral mesohabitats and their macroinvertebrate assemblages in the ecological assessment of lakes. Aquat. Conserv.: Mar. Freshwat. Ecosyst. , 13, 331351.CrossRefGoogle Scholar
Whittaker, R.J. and Fernandez-Palacios, J.M., 2007. Island Biogeography. Ecology, Evolution, and Conservation, Oxford University Press, Oxford, 401.Google Scholar
Wilson, R., 1992. Monitoring organic enrichment of rivers using chironomid pupal exuvial assemblages. Aquat. Ecol. , 26, 521525.CrossRefGoogle Scholar
Wilson, R.S. and Bright, P.L., 1973. The use of chironomid pupal exuviae for characterizing streams. Freshwat. Biol. , 3, 283302.CrossRefGoogle Scholar
Wilson, R.S. and Ruse, L.P., 2005. A guide to the identification of genera of chironomid pupal exuviae occurring in Britain and Ireland (including common genera from northern Europe) and their use in monitoring lotic and lentic freshwaters, Freshwater Biological Association, Cumbria, UK, 176.Google Scholar
Winterbourn, M.J., 1997. New Zealand mountain stream communities: Stable yet disturbed? In: Streit, B., Stadler, T. and Lively, C.M. (eds.), Evolutionary Ecology of Freshwater Animals, Birkhauser Verlag, Basel, Switzerland, 3154.CrossRefGoogle Scholar
Wrubleski, D.A. and Rosenberg, D.M., 1990. The Chironomidae (Diptera) of Bone Pile Pond, Delta Marsh, Manitoba, Canada. Wetlands , 10, 243275.CrossRefGoogle Scholar