Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T07:37:42.288Z Has data issue: false hasContentIssue false

Heavy metal concentrations in Cipangopaludina chinensis (Reeve, 1863) and relationships with sediments in Saint-Augustin Lake, Québec City (Qc, Canada)

Published online by Cambridge University Press:  05 April 2013

Ombretta Tornimbeni*
Affiliation:
CNR Institute of Ecosystem Study, Largo Tonolli 50, 28922 Verbania Pallanza, Italy
Rosa Galvez
Affiliation:
Civil Engineering Departement, Laval University, Pavillon Adrien Pouliot Building, Avenue de la Médecine, Québec, Canada
Gaëlle Triffault-Bouchet
Affiliation:
Division Écotoxicologie et Évaluation du Risque, Centre d'Expertise en analyse environnementale du Québec, Ministère du Développement Durable, de l'Environnement et des Parcs, Complexe Scientifique, 2700 rue Einstein, Bureau E-2-220, Ste-Foy (Québec), G1P 3W8 Canada
Nathalie Dassylva
Affiliation:
Centre d'Expertise en analyse environnementale du Québec, Direction de l'analyse et de l'étude de la qualité du milieu, 2700 rue Einstein, Ste-Foy (Québec), G1P-3W8 Canada
Steeve Roberge
Affiliation:
Centre d'Expertise en analyse environnementale du Québec, Direction de l'analyse et de l'étude de la qualité du milieu, 2700 rue Einstein, Ste-Foy (Québec), G1P-3W8 Canada
*
*Corresponding author. o.tornimbeni@ise.cnr.it
Get access

Abstract

Saint-Augustin Lake is an urban lake in Québec, Canada that has been subjected to long periods of direct human impact, mainly due to agricultural and urban activities, with great changes in trophic status and chemistry occurring within the last few decades. In 2009, during an examination of the lake bottom substrate, the presence of the invasive species Cipangopaludina chinensis (Reeve, 1863) was found on floor bottom sediments. The gastropods soft tissues were mineralized and analyzed by ICP-OES. The purpose of this study was to estimate concentrations of heavy metals in C. chinensis, describing the relations of these values with the sediment metal. In gastropod soft tissues the overall common trend in the heavy metal concentrations was revealed in the following order: Fe>Mn>Zn>Cu>As>Ni>Pb>Cd>Cr. Biota-sediment accumulation factors (BSAFs) have shown that C. chinensis cannot be used as a bioindicator of heavy metal pollution and exposure in the Canadian lakes where it is present. In fact, while the sediments of Saint-Augustin Lake are characterized by high metal concentrations, C. chinensis does not have high bioaccumulation factors (BSAFs <1.0). By literature comparison with other aquatic organisms in polluted ecosystems at different latitudes it was possible to affirm that the concentrations of Fe, Mn and Zn in C. chinensis tissues are considerable if compared with these sites.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, B., 2011. Bioaccumulation requiring specific attention for metals and inorganics. In: Proceedings of the “OECD meeting, Paris, 7–8 September 2011, Bioaccumulation requiring specific attention for metals and inorganics”. [online].
Bilos, C., Colombo, J.C. and Rodriguez, Presa M.J., 1998. Trace metals in suspended particles, sediments and Asiatic clams (Corbicula fluminea) of the Rio de la Plata Estuary, Argentina. Environ. Poll., 99, 111.CrossRefGoogle Scholar
Biswasa, J.K., Ranaa, S., Bhaktab, J.N. and Jana, B.B., 2009. Bioturbation potential of chironomid larvae for the sediment–water phosphorus exchange in simulated pond systems of varied nutrient enrichment. Ecol. Eng., 35, 14441453.CrossRefGoogle Scholar
Blais, J.M. and Kalff, J., 1993. Atmospheric loading of Zn, Cu, Ni, Cr, and Pb to lake sediments: The role of catchment, lake morphometry, and physico-chemical properties of the elements. Biogeochemistry, 23, 122.CrossRefGoogle Scholar
Boyd, C.E., 1995. Bottom Soils, Sediment, and Pond Aquaculture, Chapman & Hall, New York, 340 p.CrossRefGoogle Scholar
Boyle, J., 2001. Redox remobilization and the heavy metal record in lake sediments: a modelling approach. J. Paleolimnol., 26, 423431.CrossRefGoogle Scholar
Bradley, H.C., 1907a. The occurrence of manganese in freshwater clams. Science, 25, 456.Google Scholar
Bradley, H.C., 1907b. Manganese. A normal element in the tissues of freshwater clams, Unio and Anodonta. J. Biol. Chem., 3, 151.Google Scholar
Brin, M.E., 2007. Étude de la biodisponibilité des contaminants (éléments traces métalliques et phosphore) contenus dans les sédiments du lac Saint-Augustin (Québec), Collection mémoires et thèses de l'Université Laval, Département de Génie Civil, Faculté des Sciences et de Génie, 184 p.
Burkhard, L., 2009. Estimation of Biota Sediment Accumulation Factor (BSAF) from Paired Observations of Chemical Concentrations in Biota and Sediment (Final Report). U.S. Environmental Protection Agency, Ecological Risk Assessment Support Center, Cincinnati, OH, EPA/600/R-06/047, 30 p.
Connell, D.W. and Miller, G.J., 1984. Chemistry and Ecotoxicology of Pollution, John Wiley & Sons, New York, 444 p.Google Scholar
Dassylva, N., Roberge, S., Tremblay, A. and Ferland, H., 2009. Amélioration de la méthode d'analyse des métaux traces dans les tissus animaux par ICP-MS avec l'utilisation du système SC-FAST, (poster presentation), Colloque du Chapitre St-Laurent, 28–29 mai 2009, Montréal, Canada.
DeForest, D.K., Brix, K.V. and Adams, W.J., 2007. Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat. Toxicol., 84, 236246.CrossRefGoogle ScholarPubMed
Dillon, R.T. Jr , 2000. The Ecology of Freshwater Molluscs, Cambridge University Press, Cambridge, 524 p.CrossRefGoogle Scholar
Distler, D.A., 2003. Occurrence of the mystery snail Cipangopaludina chinensis (Gastropoda: Viviparidae) in the Walnut River basin, Kansas. Trans. Kansas Acad. Sci., 106, 215.CrossRefGoogle Scholar
Environment Canada, MDDEP., 2007. Criteria for the assessment of sediment quality in Quebec and application frameworks: prevention, dredging and remediation, Québec, Canada , 39 p.
Fang, Z., 2006. Heavy metals in mussels and associated sediments from the coastal sites along the Pearl River Delta, South China. Environ. Toxicol. Chem., 88, 4555.CrossRefGoogle Scholar
Galvez-Cloutier, R., Brin, M.E., Dominguez, G., Leroueil, S. and Arsenault, S., 2003. Quality evaluation of eutrophic sediments at St-Augustin Lake, Canada. ASTM Special Tech. Publ., 1442, 3552.Google Scholar
Gardner, W.S., Yang, L., Cotner, J.B., Johengen, T.H. and Lavrentyev, P.J., 2001. Nitrogen dynamics in sandy freshwater sediments (Saginaw Bay, Lake Huron). J. Great Lakes Res., 27, 8497.CrossRefGoogle Scholar
Gupta, A., 1998. Metal accumulation by riverine and lacustrine populations of Angulyagra oxytropis (Benson) (Gasteropoda: viviparidae). Environ. Monit. Assess., 50, 249254.CrossRefGoogle Scholar
Holeck, K.T., Mills, E.L., MacIsaac, H.J., Dochoda, M.R., Colautti, R.I. and Ricciardi, A., 2004. Bridging troubled waters: biological invasions, transoceanic shipping, and the Laurentian Great Lakes. Bioscience, 54, 919929.CrossRefGoogle Scholar
Hugget, R.J., Bencher, M.E. and Slone, H.D., 1973. Utilizing metal concentration relationships in the eastern oyster (Craostrae virginica) to detect heavy metal pollution. Water Res., 7, 151540.Google Scholar
ISSS - The International Society for the Systems Sciences. Available online at: http://isss.org/world/index.php
Jokinen, E., 1992. The freshwater snails (Mollusca: Gastropoda) of New York State. The University of the State of New York, The State Education Department, The New York State Museum, Albany, NY: 112 p.Google Scholar
Jokinen, E.H., 1982. Cipangopaludina chinensis (Gastropoda: Viviparidae) in North America, review and update. Nautilus, 96, 8995.Google Scholar
Kim, H. and Kim, J.G., 2006. Heavy metal concentrations in the mollusc gastropod, Cipangopaludina chinensis malleata from Upo wetland reflect the level of heavy metals in the sediments. J. Ecol. Field Biol., 29, 453460.Google Scholar
Lau, S., Mohamed, M., Tan Chi Yen, A. and Su'Ut, S., 1998. Accumulation of heavy metals in freshwater molluscs. Sci. Total Environ., 214, 113121.CrossRefGoogle ScholarPubMed
Leighton, B.J., Zervos, S. and Webster, J.M., 2000. Ecological factors in schistosome transmission, and an environmentally benign method for controlling snails in a recreational lake with a record of schistosome dermatitis. Parasitol. Int., 49, 917.CrossRefGoogle Scholar
Morteau, B., Triffault-Bouchet, G., Galvez, R., Martel, L. and Leroueil, S., 2009. Treatment of salted road runoffs using Typha latifolia, Spergularia canadensis, and Atriplex patula: a comparison of their salt removal potential. J. ASTM Int., 6, 7.CrossRefGoogle Scholar
Olufemi, M., Olayiwola, T.O., Onomibre, E.G., Momodu, L.A. and Adegboyegun-King, L.O., 2008. Trado-medicinal and nutritional values and biosafety of Lanistes libycus in Ijebu North, Southwest Nigeria. World Appl. Sci. J., 3, 921925.Google Scholar
Orvain, F., Le Hir, P. and Sauriau, P.G., 2003. A model of fluff layer erosion and subsequent bed erosion in the presence of the bioturbator, Hydrobia ulvae. J. Mar. Res., 61, 823851.CrossRefGoogle Scholar
Perron, F. and Probert, T., 1973. Viviparus malleatus, new record in New Hampshire. Nautilus, 87, 90.Google Scholar
Pienitz, R., Roberge, K. and Vincent, W.F., 2006. Three hundred years of human-induced chance in an urban lake: paleolimnological analysis of Lac Saint-Augustin, Québec City, Canada. Can. J. Bot., 84, 303320.CrossRefGoogle Scholar
Ravera, O., Beone, G.M., Cenci, R. and Lodigiani, P., 2003. Metal concentrations in Unio pictorum mancus (Mollusca, Lamellibranchia) from of 12 Northern Italian lakes in relation to their trophic level. J. Limnol., 62, 121138.CrossRefGoogle Scholar
Risgaard-Petersen, N., 2003. Coupled nitrification–denitrification in autotrophic and heterotrophic estuarine sediments: on the influence of benthic microalgae. Limnol. Oceanogr., 48, 93105.Google Scholar
Rixon, C.A.M., Duggan, I.C., Bergeron, N.M.N., Ricciardi, A. and MacIsaac, H.J., 2005. Invasion risks posed by the aquarium trade and live fish markets on the Laurentian Great Lakes. Biodivers. Conserv., 14, 13651381.CrossRefGoogle Scholar
Roberge, K., Pienitz, R. and Arsenault, S., 2002. Eutrophisation rapide du lac Saint-Augustin, Québec : étude paléolimnologique pour une reconsitution de la qualité de l'eau. Nat. Can., 26, 6882.Google Scholar
Saha, M., Sarkar, S.K. and Bhattacharya, B., 2006. Interspecific variation in heavy metal body concentrations in biota of Sunderban mangrove wetland, north east India. Environ. Int., 32, 203207.CrossRefGoogle Scholar
Shoultz-Wilson, W.A., Urine, J.M., Rickard, J. and Black, M.C., 2010. Comparison of metals concentrations in Corbicula fluminea and Elliptio hopetonensis in the Altamaha River system, Georgia, USA. Environ. Toxicol. Chem., 29, 20262033.Google Scholar
Stanczykowska, A., Magnin, E. and Dumouchel, A., 1971. Study of 3 Viviparus malleatus (Gastropoda: Prosobranchia) populations of the Montreal region. Part 1: Growth, fecundity, biomass and annual production. Can. J. Zool., 49, 14311441.CrossRefGoogle Scholar
Tartari, G.A. and Mosello, R., 1997. Metodologie analitiche e controlli di qualità nel laboratorio chimico dell'Istituto Italiano di Idrobiologiadel Consiglio Nazionale delle Ricerche. Documenta Ist. Ital. Idrobiol., 60, 160.Google Scholar
Thomann, R.V., Connolly, J.P. and Parkerton, T.F., 1992. An equilibrium model of organic chemical accumulation in aquatic food webs with sediment interaction. Environ. Toxicol. Chem., 11, 615629.CrossRefGoogle Scholar
USDA - United States Department of Agriculture. Available online at: http://www.usda.gov/wps/portal/usda/usdahome
USEPA. 1992c Method 3020A. Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by GFAA Spectroscopy In Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, SW-846 (3rd edn), United States Environmental Protection Agency, Washington, DC. Available online at: http://www.epa.gov/waste/hazard/testmethods/sw846/pdfs/3020a.pdf