Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T09:08:46.316Z Has data issue: false hasContentIssue false

Impact of the herbicide metolachlor on river periphytic diatoms: Experimental comparison of descriptors at different biological organization levels

Published online by Cambridge University Press:  04 July 2011

Vincent Roubeix*
Affiliation:
Cemagref, UR REBX, 33612 Cestas Cedex, France
Nicolas Mazzella
Affiliation:
Cemagref, UR REBX, 33612 Cestas Cedex, France
Brigitte Méchin
Affiliation:
Cemagref, UR REBX, 33612 Cestas Cedex, France
Michel Coste
Affiliation:
Cemagref, UR REBX, 33612 Cestas Cedex, France
François Delmas
Affiliation:
Cemagref, UR REBX, 33612 Cestas Cedex, France
*
*Corresponding author: vincent.roubeix@cemagref.fr

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A microcosm experiment was carried out in order to test the effect of the herbicide metolachlor on river periphytic diatoms and to find potential diatom bioindicators of contamination. Effects were investigated at different biological organization levels (biofilm, diatom community, population and individual levels). The colonization of glass substrates by natural biofilm in artificial streams did not vary quantitatively between control and contaminated conditions (5 and 30 μg.L1). However, non-parametric multivariate analysis of variance revealed a significant difference between contaminated and control diatom communities with regard to species composition. The difference was due to the greater development of probably tolerant species in the presence of the herbicide (e.g., Planothidium frequentissimum, Planothidium lanceolatum, Amphora montana, Surirella brebissonii and Nitzschia gracilis). An increase in the occurrence of abnormal forms was observed in relation to metolachlor concentration. In particular, up to 8% of the frustules of the species Surirella angusta exhibited prominent deformities. Monospecific acute toxicity tests were then performed on two species to estimate toxicity parameters based on growth inhibition. These tests also confirmed the teratogenic effect of the herbicide on S. angusta. This study shows that low concentrations of metolachlor in natural streams may significantly alter diatom community structure and that abnormal diatom forms should be taken into account in water contamination assessment.

Type
Research Article
Copyright
© EDP Sciences, 2011

References

AFNOR, 2004. Qualité de l'eau – Guide pour l'identification et le dénombrement des échantillons de diatomées benthiques de rivières, et leur interprétation. Norme NF EN ISO 14407 (October 2004), T90-357–2, 12 p.
Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Austral. Ecol., 26, 3246.Google Scholar
Anderson, M.J., 2006. Distance-based tests for homogeneity of multivariate dispersions. Biometrics, 62, 245253.CrossRefGoogle ScholarPubMed
Battaglin, W.A., Furlong, E.T., Burkhardt, M.R. and Peter, C.J., 2000. Occurrence of sulfonylurea, sulfonamide, imidazolinone, and other herbicides in rivers, reservoirs and ground water in the Midwestern United States, 1998. Sci. Total Environ., 248, 123133.CrossRefGoogle ScholarPubMed
Boger, P., Matthes, B. and Schmalfuss, J., 2000. Towards the primary target of chloroacetamides – new findings pave the way. Pest Manag. Sci., 56, 497508.3.0.CO;2-W>CrossRefGoogle Scholar
Cattaneo, A., Couillard, Y., Wunsam, S. and Courcelles, M., 2004. Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault ( Quebec, Canada). J. Paleolimnol., 32, 163175.CrossRefGoogle Scholar
Clark, G.M. and Goolsby, D.A., 2000. Occurrence and load of selected herbicides and metabolites in the lower Mississippi River. Sci. Total Environ., 248, 101113.CrossRefGoogle ScholarPubMed
Coste, M., Boutry, S., Tison-Rosebery, J. and Delmas, F., 2009. Improvements of the Biological Diatom Index (BDI): Description and efficiency of the new version (BDI-2006). Ecol. Indic., 9, 621650.CrossRefGoogle Scholar
Debenest, T., Silvestre, J., Coste, M., Delmas, F. and Pinelli, E., 2008. Herbicide effects on freshwater benthic diatoms: Induction of nucleus alterations and silica cell wall abnormalities. Aquat. Toxicol., 88, 8894.CrossRefGoogle ScholarPubMed
Debenest, T., Pinelli, E., Coste, M., Silvestre, J., Mazzella, N., Madigou, C. and Delmas, F., 2009. Sensitivity of freshwater periphytic diatoms to agricultural herbicides. Aquat. Toxicol., 93, 1117.CrossRefGoogle ScholarPubMed
Debenest, T., Silvestre, J., Coste, M. and Pinelli, E., 2010. Effects of pesticides on freshwater diatoms. Rev. Environ. Contam. Toxicol., 203, 87103.Google ScholarPubMed
Dubois, A., Lacouture, L. and Feuillet, C., 2010. Les pesticides dans les milieux aquatiques, Études et Documents, 26, Commissariat Général au Développement Durable, Paris.Google Scholar
European Commission, 2000. Directive 2000/60/EC of the European parliament and of the council of 23rd October 2000 establishing a framework for community action in the field of water policy. Off. J. Eur. Commun., 327, 172.
Fairchild, J.F., Ruessler, D.S., Haverland, P.S. and Carlson, A.R., 1997. Comparative sensitivity of Selenastrum capricornutum and Lemna minor to sixteen herbicides. Arch. Environ. Con. Toxicol., 32, 353357.CrossRefGoogle ScholarPubMed
Falasco, E., Bona, F., Ginepro, M., Hlubikova, D., Hoffmann, L. and Ector, L., 2009. Morphological abnormalities of diatom silica walls in relation to heavy metal contamination and artificial growth conditions. Water SA, 35, 595606.CrossRefGoogle Scholar
Gold, C., Feurtet-Mazel, A., Coste, M. and Boudou, A., 2003. Effects of cadmium stress on periphytic diatom communities in indoor artificial streams. Freshwater Biol., 48, 316328.CrossRefGoogle Scholar
Guillard, R.R.L. and Lorenzen, C.J., 1972. Yellow-green algae with chlorophyllide c. J. Phycol., 8, 1014.Google Scholar
Hamala, J.A. and Kollig, H.P., 1985. The effects of atrazine on periphyton communities in controlled laboratory ecosystems. Chemosphere, 14, 13911408.CrossRefGoogle Scholar
Hamilton, P.B., Jackson, G.S., Kaushik, N.K. and Solomon, K.R., 1987. The impact of atrazine on lake periphyton communities, including carbon uptake dynamics using track autoradiography. Environ. Pollut., 46, 83103.CrossRefGoogle ScholarPubMed
Hering, D., Borja, A., Carstensen, J., Carvalho, L., Elliott, M., Feld, C.K., Heiskanen, A.S., Johnson, R.K., Moe, J., Pont, D., Solheim, A.L. and de Bund, W.V., 2010. The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future. Sci. Total Environ., 408, 40074019.CrossRefGoogle ScholarPubMed
Hill, A.V., 1910. The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. J. Physiol., 40 (Suppl.), ivvii.Google Scholar
Hladik, M.L., Hsiao, J.J. and Roberts, A.L., 2005. Are neutral chloroacetamide herbicide degradates of potential environmental concern? Analysis and occurrence in the Upper Chesapeake Bay. Environ. Sci. Technol., 39, 65616574.CrossRefGoogle ScholarPubMed
Ihaka, R. and Gentleman, R., 1996. R: A language for data analysis and graphics. J. Comput. Graph. Stat., 5, 299314.Google Scholar
Ivorra, N., Barranguet, C., Jonker, M., Kraak, M.H.S. and Admiraal, W., 2002. Metal-induced tolerance in the freshwater microbenthic diatom Gomphonema parvulum. Environ. Pollut., 116, 147157.CrossRefGoogle ScholarPubMed
Junghans, M., Backhaus, T., Faust, M., Scholze, M. and Grimme, L.H., 2003. Predictability of combined effects of eight chloroacetanilide herbicides on algal reproduction. Pest. Manag. Sci., 59, 11011110.CrossRefGoogle ScholarPubMed
Kegley, S.E., Hill, B.R., Orme, S. and Choi, A.H., 2010. PAN pesticide database, Pesticide Action Network, San Francisco.Google Scholar
Kosinski, R.J., 1984. The effect of terrestrial herbicides on the community structure of stream periphyton. Environ. Pollut. A, 36, 165189.CrossRefGoogle Scholar
Krammer, K. and Lange-Bertalot, H., 1986–1991. Bacillariophyceae 1. Teil: Naviculaceae, 876 p.; 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae, 596 p.; 3. Teil: Centrales, Fragilariaceae, Eunotiaceae, 576 p.; 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema, G. Fischer Verlag, Stuttgart, 437 p.
Liu, H. and Xiong, M., 2009. Comparative toxicity of racemic metolachlor and S-metolachlor to Chlorella pyrenoidosa. Aquat. Toxicol., 93, 100106.CrossRefGoogle ScholarPubMed
Ma, J. and Liang, W., 2001. Acute toxicity of 12 herbicides to the green algae Chlorella pyrenoidosa and Scenedesmus obliquus. Bull. Environ. Contam. Toxicol., 67, 347351.Google ScholarPubMed
Ma, J., Lin, F., Wang, S. and Xu, L., 2003. Toxicity of 21 herbicides to the green alga Scenedesmus quadricauda. Bull. Environ. Contam. Toxicol., 71, 594601.CrossRefGoogle ScholarPubMed
Martin-Jezequel, V., Hildebrand, M. and Brzezinski, M.A., 2000. Silicon metabolism in diatoms: Implications for growth. J. Phycol., 36, 821840.CrossRefGoogle Scholar
Mohr, S., Feibicke, M., Berghahn, R., Schmiediche, R. and Schmidt, R., 2008. Response of plankton communities in freshwater pond and stream mesocosms to the herbicide metazachlor. Environ. Pollut., 152, 530542.CrossRefGoogle ScholarPubMed
Morin, S., Duong, T.T., Dabrin, A., Coynel, A., Herlory, O., Baudrimont, M., Delmas, F., Durrieu, G., Schafer, J., Winterton, P., Blanc, G. and Coste, M., 2008. Long-term survey of heavy-metal pollution, biofilm contamination and diatom community structure in the Riou Mort watershed, South-West France. Environ. Pollut., 151, 532542.CrossRefGoogle ScholarPubMed
Morin, S., Bottin, M., Mazzella, N., Macary, F., Delmas, F., Winterton, P. and Coste, M., 2009. Linking diatom community structure to pesticide input as evaluated through a spatial contamination potential (Phytopixal): A case study in the Neste river system (South-West France). Aquat. Toxicol., 94, 2839.CrossRefGoogle Scholar
Noack, U., Geffke, T., Balasubramanian, R., Papenbrock, J., Braunec, M. and Scheerbaum, D., 2003. Effects of the herbicide metazachlor on phytoplankton and periphyton communities in outdoor mesocosms. Acta Hydrochim. Hydrobiol., 31, 482490.CrossRefGoogle Scholar
Osano, O., Admiraal, W., Klamer, H.J.C., Pastor, D. and Bleeker, E.A.J., 2002. Comparative toxic and genotoxic effects of chloroacetanilides, formamidines and their degradation products on Vibrio fischeri and Chironomus riparius. Environ. Pollut., 119, 195202.CrossRefGoogle ScholarPubMed
Pérès, F., Florin, D., Grollier, T., Feurtet-Mazel, A., Coste, M., Ribeyre, F., Ricard, M. and Boudou, A., 1996. Effects of the phenylurea herbicide isoproturon on periphytic diatom communities in freshwater indoor microcosms. Environ. Pollut., 94, 141152.CrossRefGoogle ScholarPubMed
Pesce, S., Lissalde, S., Lavieille, D., Margoum, C., Mazzella, N., Roubeix, V. and Montuelle, B., 2010. Evaluation of single and joint toxic effects of diuron and its main metabolites on natural phototrophic biofilms using a pollution-induced community tolerance (PICT) approach. Aquat. Toxicol., 99, 492499.CrossRefGoogle ScholarPubMed
Prygiel, J., Coste, M. and Bukowska, J., 1999. Review of the major diatom-based techniques for the quality assessment of rivers – State of the art in Europe. In: Prygiel, J., Whitton, B.A. and Bukowska, J. (eds.), Use of algae for monitoring rivers III, Agence de l'Eau Artois-Picardie, Douai, 224238.Google Scholar
Ricart, M., Barceló, D., Geiszinger, A., Guasch, H., Alda, M.L.D., Romaní, A.M., Vidal, G., Villagrasa, M. and Sabater, S., 2009. Effects of low concentrations of the phenylurea herbicide diuron on biofilm algae and bacteria. Chemosphere, 76, 13921401.CrossRefGoogle ScholarPubMed
Roubeix, V., Mazzella, N., Delmas, F. and Coste, M., 2010. In situ evaluation of herbicide effects on the composition of river periphytic diatom communities in a region of intensive agriculture. Vie Milieu, 160, 233241.Google Scholar
Schmitt-Jansen, M. and Altenburger, R., 2005. Toxic effects of isoproturon on periphyton communities – a microcosm study. Estuar. Coast. Shelf Sci., 62, 539545.CrossRefGoogle Scholar
Spawn, R.L., Hoagland, K.D. and Siegfried, B.D., 1997. Effects of alachlor on an algal community from a midwestern agricultural stream. Environ. Toxicol. Chem., 16, 785793.CrossRefGoogle Scholar
Vallotton, N., Moser, D., Eggen, R.I.L., Junghans, M. and Chèvre, N., 2008. S-metolachlor pulse exposure on the alga Scenedesmus vacuolatus: Effects during exposure and the subsequent recovery. Chemosphere, 73, 395400.CrossRefGoogle ScholarPubMed
Vera, M.S., Lagomarsino, L., Sylvester, M., Perez, G.L., Rodriguez, P., Mugni, H., Sinistro, R., Ferraro, M., Bonetto, C., Zagarese, H. and Pizarro, H., 2010. New evidences of Roundup® (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems. Ecotoxicology, 19, 710721.CrossRefGoogle Scholar