Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T16:15:14.177Z Has data issue: false hasContentIssue false

Light-dependent germination and subsequent proliferation of N2-fixing cyanobacteria in a large shallow lake

Published online by Cambridge University Press:  03 May 2012

Attila W. Kovács*
Affiliation:
Balaton Limnological Research Institute of the Hungarian Academy of Sciences, Klebelsberg K. u. 3, H-8237 Tihany, Hungary
Viktor R. Tóth
Affiliation:
Balaton Limnological Research Institute of the Hungarian Academy of Sciences, Klebelsberg K. u. 3, H-8237 Tihany, Hungary
Lajos Vörös
Affiliation:
Balaton Limnological Research Institute of the Hungarian Academy of Sciences, Klebelsberg K. u. 3, H-8237 Tihany, Hungary
*
*Corresponding author: kovacswa@gmail.com
Get access

Abstract

Cyanobacteria are a worldwide group of photosynthetic prokaryotes that can cause nuisance blooms in eutrophic waters. It is generally accepted that their resting cells, akinetes, play an important role in the dispersal, recruitment, initiation of blooms and survival under unfavourable conditions, therefore information on the germination, distribution and abundance of akinetes in natural sediments is essential for understanding the ecology and bloom dynamics of N2-fixing cyanobacteria. The present study describes the effect of irradiance on the germination and subsequent growth of N2-fixing filamentous cyanobacteria developed from natural akinete stock in sediment of Lake Balaton (Hungary) with varying phosphorous supply. The research focuses on the invasive Cylindrospermopsis raciborskii and Aphanizomenon flos-aquae the most abundant species of this lake. In the experiments, the germination of ten filamentous N2-fixing cyanobacteria species was observed. The species assemblages of the germinated cyanobacteria populations showed strong light and phosphorus dependence. Anabaena and Anabaenopsis species became dominant in phosphorous-rich conditions, while in phosphorus-deficient environments Aphanizomenon species and C. raciborskii dominated. Among the germinated filaments we have detected Anabaenopsis cunningtonii and Anabaena compacta, which have not been observed in Lake Balaton previously. Our results suggest that among the filamentous heterocytic cyanobacteria of this shallow lake the invasive C. raciborskii was the best competitor when phosphorus supply and irradiance were low.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alster, A., Kaplan-Levy, R.N., Sukenik, A. and Zohary, T., 2010. Morphology and phylogeny of a non-toxic invasive Cylindrospermopsis raciborskii from a Mediterranean Lake. Hydrobiologia, 639, 115128.CrossRefGoogle Scholar
Baier, T. and Neuwirth, E., 2007. Excel.COM.R. Comput. Statist., 22, 91108.CrossRefGoogle Scholar
Baker, P.D. and Belifemine, D., 2000. Environmental influences on akinete germination of Anabaena circinalis and implications for management of cyanobacterial blooms. Hydrobiologia, 427, 6573.CrossRefGoogle Scholar
Barbiero, R.R. and Welch, E.B., 1992. Contribution of benthic blue–green algal recruitment to lake populations and phosphorus translocation. Freshwater Biol., 27, 249260.CrossRefGoogle Scholar
Braune, W., 1979. C-Phycocyanin – The main photoreceptor in the light dependent germination process of Anabaena akinetes. Arch. Microbiol., 122, 289295.CrossRefGoogle Scholar
Faithfull, L.C. and Burns, C.W., 2006. Effects of salinity and source of inocula on germination of Anabaena akinetes from a tidally influenced lake. Freshwater Biol., 51, 705716.CrossRefGoogle Scholar
Fay, P., 1988. Viability of akinetes of the planktonic cyanobacterium Anabaena circinalis. Proc. R. Soc. Lond. B, 234, 283301.CrossRefGoogle Scholar
Gorzó, Gy., 1986. A Balaton üledékében előforduló heterocisztás cianobaktérium spórák csírázásának hőfokfüggése. [Temperature dependence germination of akinetes of heterocystic cyanobacteria occurring in the sediment of Lake Balaton]. In: Magyar, Hidrobiológiai Társaság (ed.), MHT VI. Országos Vándorgyűlés, MTESZ, Budapest, 499507 [in Hungarian].Google Scholar
Gorzó, Gy., 1987. Fizikai és kémiai faktorok hatása a Balatonban előforduló heterocisztás cianobaktériumok spóráinak csírázására. [The influence of physical and chemical factors on the germination of spores of heterocystic cyanobacteria in Lake Balaton]. Hidrológiai Közlöny, 67, 127133. [in Hungarian with English summary].Google Scholar
Gorzó, Gy. and Kiss, G., 1984. A Balaton 1982. évi trofitásemelkedés okai. Vízügyi Közlemények, LXVI, 586602.Google Scholar
Gorzó, Gy. and Kiss, G., 1985. Néhány heterocisztás cianobaktérium populációdinamikája a Balatonban (1983). [Populationsdynamik einiger heterozysten-Zyanobacterien im Balaton (1983)]. Hidrológiai Közlöny, 65, 181186. [in Hungarian with German summary].Google Scholar
Hansson, L.-A., Rudstam, L.G., Johnson, T.B., Soranno, P. and Allen, Y., 1994. Pattern in algal recruitment from sediment to water in a dimictic, eutropic lake. Can. J. Fish. Aquat. Sci., 51, 28252833.CrossRefGoogle Scholar
H.-Bartha, Zs., 1974. The occurrence of Aphanizomenon issatschenkoi (Ussaczew) Proschkina-Lavrenko in Lake Balaton. Inst. Biol. (Tihany) Hung. Acad. Sci., 41, 127131.Google Scholar
Head, R.M., Jones, R.I. and Bailey-Watts, E.A., 1998. Akinete germination and recruitment of planktonic cyanobacteria from lake sediments. Verh. Int. Verein. Limnol., 26, 17111715.Google Scholar
Head, R.M., Jones, R.I. and Bailey-Watts, E.A., 1999. An assessment of the influence of recruitment from the sediment on the development of planktonic populations of cyanobacteria in a temperate mesotrophic lake. Freshwater Biol., 41, 759769.CrossRefGoogle Scholar
Hegewald, E., Jeeji-Bai, N. and Hesse, M., 1975. Taxonomische und floristische Studien an Planktonalgen aus ungarischen Gewässern. Arch. Hydrobiol. Suppl., 46, Algological Studies, 13, 392432.Google Scholar
Herdman, M., 1987. Akinetes: structure and function. In: Fay, P. and Van Baalen, C. (eds.), The Cyanobacteria, Elsevier, Oxford, 227250.Google Scholar
Herodek, S., Lackó, L. and Virág, Á., 1988. Lake Balaton Research and Management, NEXUS, Budapest, 112 p.Google Scholar
Hillebrand, H., Dürselen, C.-D., Kirschtel, D., Pollingher, U. and Zohary, T., 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol., 35, 403424.CrossRefGoogle Scholar
Huber, A.L., 1985. Factors affecting the germination of akinetes of Nodularia spumigena (Cyanobacteriaceae). Appl. Environ. Microbiol., 49, 7378.Google Scholar
Jones, R.I., 1979. Notes on the growth and sporulation of a natural population of Aphanizomenon flos-aquae. Hydrobiologia, 62, 5558.CrossRefGoogle Scholar
Karlsson-Elfgren, I., Rengefors, K. and Gustafsson, S., 2004. Factors regulating recruitment from the sediment to the water column in the bloom–forming cyanobacterium Gloeotrichia echinulata. Freshwater Biol., 49, 265273.CrossRefGoogle Scholar
Kaushik, M., Kumar, H.D. and Singh, H.N., 1971. Studies on growth and development of two nitrogen fixing blue-green algae. I. Carbon and phosphorous nutrition. Z. Planzenphysiol. Bd., 65 (Suppl.), 432442.Google Scholar
Kim, B.H., Lee, W.S., Kim, Y.-O., Lee, H.-O. and Han, M.-S., 2005. Relationship between akinete germination and vegetative population of Anabaena flos-aquae (Nostocales, Cyanobacteria) in Seokchon reservoir (Seoul, Korea). Arch. Hydrobiol., 163, 4964.CrossRefGoogle Scholar
Kiss, G., 1998. Hosszú távú algavizsgálatok a Balatonon [Long-term investigations of phytoplankton in Lake Balaton]. Hidrológiai Közlöny, 78, 312314 [in Hungarian with English summary].Google Scholar
Livingstone, D. and Jaworski, G.H.M., 1980. The viability of akinetes of blue-green algae recovered from the sediments of Rostherne Mere. Br. Phycol. J., 15, 357364.CrossRefGoogle Scholar
Lund, J.W.G., Kipling, C. and Le Cren, E.D., 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologie, 11, 143170.CrossRefGoogle Scholar
McQuoid, M.R. and Hobson, L.A., 1995. Importance of resting stages in diatom seasonal succession. J. Phycol., 31, 4455.CrossRefGoogle Scholar
Murphy, J. and Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta, 27, 3136.CrossRefGoogle Scholar
Neely-Fisher, D.L., White, W.B. and Fisher, R.W., 1989. Fructose-induced dark germination of Anabaena akinetes. Curr. Microbiol., 19, 139142.CrossRefGoogle Scholar
Obrig, T.G., Culp, W.J., Wallace, L., McKeehan, L. and Hardesty, B., 1971. The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes. J. Biol. Chem., 249, 174181.Google Scholar
Oláh, J., ElSamra, M.I., Abdel-Moneim, M.A., Tóth, L. and Vörös, L., 1981. Nitrogénkötés halhústermelő agroökoszisztémákban. [Nitrogen fixation in fish-producing agro-ecosystems]. A halhústermelés fejlesztése 10, HAKI, Szarvas. P. [in Hungarian].
Padisák, J., G.-Tóth, L. and Vörös, L., 1984. Anabaenopsis raciborskii Wołosz. bloom inLake Balaton in the summer and autumn of 1982. BFB-Bericht, 51, 7781.Google Scholar
Padisák, J. and Reynolds, C.S., 1998. Selection of phytoplankton associations inLake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes. Hydrobiologia, 384, 4153.CrossRefGoogle Scholar
Pandey, R.K. and Talpasayi, E.R.S., 1981. Factors affecting germination of spores in a blue-green alga Nodularia spumigena Mertens. Acta Bot. Ind., 9, 3542.Google Scholar
Présing, M., Herodek, S., Vörös, L. and Kóbor, I., 1996. Nitrogen fixation, ammonium and nitrate uptake during a bloom of Cylindrospermopsis raciborskii in Lake Balaton. Arch. Hydrobiol., 136, 553562.Google Scholar
Rai, A.K. and Pandey, G.P., 1981. Influence of environmental stress on the germination of Anabaena vaginicola akinetes. Ann. Bot., 48, 361370.CrossRefGoogle Scholar
Reddy, P.M., 1983. Changes in polyphosphate bodies during sporulation and spore germination in cyanobacteria. Biochem. Physiol. Pflanz., 178, 7779.CrossRefGoogle Scholar
Reddy, P.M., 1984. Effect of distilled water pre-treatment, nitrate and phosphate on germination of spores of two blue-green algae. Arch. Hydrobiol., 100, 261265.Google Scholar
Rengefors, K. and Anderson, D.M., 1998. Environmental and endogenous regulation of cyst germination in two freshwater dinoflagellates. J. Phycol., 34, 568577.CrossRefGoogle Scholar
Reynolds, C.S., 1972. Growth, gas vacuolation and buoyancy in a natural population of a planktonic blue-green alga. Freshwater Biol., 2, 87106.CrossRefGoogle Scholar
Reynolds, C.S., 1975. Interrelations of photosynthetic behavior and buoyancy regulation in a natural population of a blue green alga. Freshwater Biol., 5, 323338.CrossRefGoogle Scholar
Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. and Stainer, R.Y., 1979. The cyanobacteria. J. Gen. Microbiol., 111, 161.Google Scholar
Roelofs, T.D. and Oglesby, R.T., 1970. Ecological observations on the planktonic cyanophyte Gloeotrichia echinulata. Limnol. Oceanogr., 15, 224229.CrossRefGoogle Scholar
Sukenik, A., Beardall, J. and Hadas, O., 2007. Photosynthetic characterization of developing and mature akinetes of Aphanizomenon ovalisporum (Cyanoprokaryota). J. Phycol., 43, 780788.CrossRefGoogle Scholar
Talpasayi, E.R.S., 1962. Polyphosphate containing particles of blue-green algae. Cytologia, 28, 7680.CrossRefGoogle Scholar
Tamás, G., 1974. The occurrence of Rhaphidiopsis mediterranea Skuja in the plankton of Lake Balaton. Ann. Inst. Biol. (Tihany) Hung. Acad. Sci., 41, 317321.Google Scholar
Tsujimura, S. and Okubo, T., 2003. Development of Anabaena blooms in a small reservoir with dense sediment akinete population, with dense sediment akinete population, with special reference to temperature and irradiance. J. Plankton Res., 25, 10591067.CrossRefGoogle Scholar
Uherkovich, G. and Lantos, T., 1987. Angaben zur Kenntnis der Algenvegetation auf der Sedimentoberfläche im Balaton (Plattensee), Ungarn. Limnologica (Berlin), 18, 2967.Google Scholar
Van Dok, W. and Hart, B.T., 1997. Akinete germination in Anabaena circinalis (Cyanophyta). J. Phycol., 33, 1217.Google Scholar
Vörös, L., Vízkeleti, É., Tóth, F. and Németh, J., 1983. Trofitás vizsgálatok a Balaton Keszthelyi-medencéjében 1979-ben. [Trophity studies in the Keszthely Basin of Lake Balaton in 1979]. Hidrol. Közl., 63, 390398 [in Hungarian with English and Russian summary].Google Scholar
Yamamoto, Y., 1976. Effect of some physical and chemical factors on the germination of akinetes of Anabaena cylindrica. J. Gen. Appl. Microbiol., 22, 311323.CrossRefGoogle Scholar
Zlinszky, J., 1987. The biologically available phosphorus load and the bacterial production in Lake Balaton (Hungary). Doctoral dissertation, Roland Eötvös University, Budapest, 147 p.
Zohary, T. and Shlichter, M., 2009. Invasion of Lake Kinneret by the N2-fixing cyanobacterium Cylindrospermopsis cuspis Komárek and Kling. Verh. Int. Verein. Limnol., 30, 12511254. Google Scholar