Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T20:12:40.603Z Has data issue: false hasContentIssue false

Planktivory in non-indigenous fish and implications for trophic interactions in a Mediterranean shallow lake

Published online by Cambridge University Press:  09 August 2011

Bruno B. Castro*
Affiliation:
Department of Biology and Centre for Marine and Environmental Research (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
Fernando Gonçalves
Affiliation:
Department of Biology and Centre for Marine and Environmental Research (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
*
*Corresponding author: brunocastro@ua.pt
Get access

Abstract

Similar to other Mediterranean lakes, Lake Vela displays a marked dominance of alien species, but the impact of such an assemblage on the lower trophic levels of shallow eutrophic lakes has been overlooked. In this study, zooplanktivory in the omnivorous fish assemblage of Lake Vela was examined from April to October 2003 (and also in January 2004). During this period, ichthyocenosis was characterized by abundance of juvenile fish, which strongly depended on zooplankton. Adult mosquitofish (Gambusia holbrooki) and pumpkinseed (Lepomis gibbosus) foraged on the same zooplanktonic prey than juveniles, although planktivory was less important in larger fish. Using multivariate analysis, it was possible to attribute most of the variability in planktivory to resource availability, as both fish foraged on the most abundant prey in each month. Albeit this opportunistic behaviour, mosquitofish was found to be positively selective towards small-sized littoral cladocerans, while pumpkinseed displayed positive selection towards Alona and Daphnia. In the absence of more efficient planktivores, pumpkinseed is now the main planktivore in Lake Vela and the main predator of Daphnia. However, due to low densities of Daphnia during most of the study period, Daphnia was virtually absent from the diet of pumpkinseed from June to October, a period during which this benthi–planktivore foraged chiefly on less-rewarding planktonic prey (small-sized cladocerans and cyclopoid copepods). Mosquitofish was an important planktivore in littoral and structured habitats. Flexible foraging behaviour partly explains the success of these two species in Lake Vela.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrantes, N., Antunes, S.C., Pereira, M.J. and Gonçalves, F., 2006. Seasonal succession of cladocerans and phytoplankton and their interactions in a shallow eutrophic lake (Lake Vela, Portugal). Acta Oecol., 29, 5464.CrossRefGoogle Scholar
Alcaraz, C. and Garcia-Berthou, E., 2006. Food of an endangered cyprinodont (Aphanius iberus): ontogenetic diet shift and prey electivity. Environ. Biol. Fish, 78, 193207.CrossRefGoogle Scholar
Almaça, C., 1995. Fish species and varieties introduced into Portuguese inland waters, Museu Nacional de História Natural, Lisbon.Google Scholar
Amundsen, P.A., Gabler, H.M. and Staldvik, F.J., 1996. A new approach to graphical analysis of feeding strategy from stomach contents data – modification of the Costello (1990) method. J. Fish Biol., 48, 607614.Google Scholar
Antunes, S.C., Abrantes, N. and Gonçalves, F., 2003. Seasonal variation of the abiotic parameters and the cladoceran assemblage of Lake Vela: comparison with previous studies. Ann. Limnol. - Int. J. Limnol., 39, 255264.CrossRefGoogle Scholar
Beklioglu, M., Romo, S., Kagalou, I., Quintana, X. and Bécares, E., 2007. State of the art in the functioning of shallow Mediterranean lakes: workshop conclusions. Hydrobiologia, 584, 317326.CrossRefGoogle Scholar
Blanco, S., Romo, S., Villena, M.J. and Martínez, S., 2003. Fish communities and food web interactions in some shallow Mediterranean lakes. Hydrobiologia, 506, 473480.CrossRefGoogle Scholar
Blanco, S., Romo, S. and Villena, M.J., 2004. Experimental study on the diet of mosquitofish (Gambusia holbrooki) under different ecological conditions in a shallow lake. Int. Rev. Hydrobiol., 89, 250262.CrossRefGoogle Scholar
Boersma, M., Van Tongeren, O.F.R. and Mooij, W.M., 1996. Seasonal patterns in the mortality of Daphnia species in a shallow lake. Can. J. Fish Aquat. Sci., 53, 1828.CrossRefGoogle Scholar
Borcard, D., Legendre, P. and Drapeau, P., 1992. Partialling out the spatial component of ecological variation. Ecology, 73, 10451055.CrossRefGoogle Scholar
Cabral, J.A. and Marques, J.C., 1999. Life history, population dynamics and production of eastern mosquitofish, Gambusia holbrooki (Pisces, Poeciliidae), in rice fields of the lower Mondego River valley, western Portugal. Acta Oecol., 20, 607620.CrossRefGoogle Scholar
Cabral, J.A., Mieiro, C.L. and Marques, J.C., 1998. Environmental and biological factors influence the relationship between a predator fish, Gambusia holbrooki, and its main prey in rice fields of the lower Mondego River valley (Portugal). Hydrobiologia, 382, 4151.CrossRefGoogle Scholar
Cambray, J.A., 2003. Impact on indigenous species biodiversity caused by the globalisation of alien recreational freshwater fisheries. Hydrobiologia, 500, 217230.CrossRefGoogle Scholar
Castro, B.B. and Gonçalves, F., 2007. Seasonal dynamics of the crustacean zooplankton of a shallow eutrophic lake from the Mediterranean region. Fundam. Appl. Limnol. - Arch. Hydrobiol., 169, 189202.CrossRefGoogle Scholar
Castro, B.B., Marques, S.M. and Gonçalves, F., 2007. Habitat selection and diel distribution of the crustacean zooplankton from a shallow Mediterranean lake during the turbid and clear water phases. Freshw. Biol., 52, 421433.CrossRefGoogle Scholar
Eklöv, P. and Van Kooten, T., 2001. Facilitation among piscivorous predators: effects of prey habitat use. Ecology, 82, 24862494.CrossRefGoogle Scholar
Fernández-Delgado, C., 1989. Life-history patterns of the mosquito-fish, Gambusia affinis, in the estuary of the Guadalquivir River of south-west Spain. Freshw. Biol., 22, 395404.CrossRefGoogle Scholar
García-Berthou, E., 1999. Food of introduced mosquitofish: ontogenic diet shift and prey selection. J. Fish Biol., 55, 135147.CrossRefGoogle Scholar
García-Berthou, E. and Moreno-Amich, R., 2000. Food of introduced pumpkinseed sunfish: ontogenic diet shift and seasonal variation. J. Fish Biol., 57, 2940.CrossRefGoogle Scholar
Gliwicz, Z.M., 2001. Species-specific population-density thresholds in cladocerans? Hydrobiologia, 442, 291300.CrossRefGoogle Scholar
Gliwicz, Z.M., Jawinski, A. and Pawlowicz, M., 2004. Cladoceran densities, day-to-day variability in food selection by smelt, and the birth-rate-compensation hypothesis. Hydrobiologia, 526, 171186.CrossRefGoogle Scholar
Godinho, F.N., Ferreira, M.T. and Cortes, R.V., 1997. The environmental basis of diet variation in pumpkinseed sunfish, Lepomis gibbosus, and largemouth bass, Micropterus salmoides, along an Iberian river basin. Environ. Biol. Fish, 50, 105115.CrossRefGoogle Scholar
Hansson, L.A., Nicolle, A., Brodersen, J., Romare, P., Nilsson, P.A., Brönmark, C. and Skov, C., 2007. Consequences of fish predation, migration, and juvenile ontogeny on zooplankton spring dynamics. Limnol. Oceanogr., 52, 696706.CrossRefGoogle Scholar
Hurlbert, S.H., Zedler, J. and Fairbanks, D., 1972. Ecosystem alteration by mosquitofish (Gambusia affinis) predation. Science, 175, 639641.CrossRefGoogle ScholarPubMed
Hyslop, E.J., 1980. Stomach contents analysis – a review of methods and their application. J. Fish Biol., 17, 411429.CrossRefGoogle Scholar
Jeppesen, E., Jensen, J.P., Søndergaard, M., Lauridsen, T.L., Pedersen, L.J. and Jensen, L., 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia, 342/343, 151164.CrossRefGoogle Scholar
Jeppesen, E., Meerhoff, M., Jacobsen, B.A., Hansen, R.S., Søndergaard, M., Jensen, J.P., Lauridsen, T.L., Mazzeo, N. and Branco, C.W.C., 2007. Restoration of shallow lakes by nutrient control and biomanipulation – the successful strategy varies with lake size and climate. Hydrobiologia, 581, 269285.CrossRefGoogle Scholar
Jeppesen, E., Meerhoff, M., Holmgren, K., González-Bergonzoni, I., Teixeira de Mello, F., Declerck, S.A.J., De Meester, L., Søndergaard, M., Lauridsen, T.L., Bjerring, R., Conde-Porcuna, J.M., Mazzeo, N., Iglesias, C., Reizenstein, M., Malmquist, H.J., Liu, Z., Balayla, D. and Lazzaro, X., 2010. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia, 646, 7390.CrossRefGoogle Scholar
Lechowicz, M.J., 1982. The sampling characteristics of electivity indices. Oecologia, 52, 2230.CrossRefGoogle ScholarPubMed
Maazouzi, C., Médoc, V., Pihan, J.C. and Masson, G., 2010. Size-related dietary changes observed in young-of-the-year pumpkinseed (Lepomis gibbosus): stomach contents and fatty acid analyses. Aquat. Ecol., 45, 2333.CrossRefGoogle Scholar
Margaritora, F.G., Ferrara, O. and Vagaggini, D., 2001. Predatory impact of the mosquitofish (Gambusia holbrooki Girard) on zooplanktonic populations in a pond at Tenuta di Castelporziano (Rome, Central Italy). J. Limnol., 60, 189193.CrossRefGoogle Scholar
Matveev, V., Matveeva, L. and Jones, G.J., 2000. Relative impacts of Daphnia grazing and direct stimulation by fish on phytoplankton abundance in mesocosm communities. Freshw. Biol., 44, 375385.CrossRefGoogle Scholar
Moss, B., Stephen, D., Balayla, D.M., Becares, E., Collings, S.E., Fernández-Aláez, C., Fernández-Aláez, M., Ferriol, C., Garcia, P., Goma, J., Gyllstrom, M., Hansson, L.A., Hietala, J., Kairesalo, T., Miracle, M.R., Romo, S., Rueda, J., Russell, V., Stahl-Delbanco, A., Svensson, M., Vakkilainen, K., Valentin, M., Van de Bund, W.J., van Donk, E., Vicente, E. and Villena, M.J., 2004. Continental-scale patterns of nutrient and fish effects on shallow lakes: synthesis of a pan-European mesocosm experiment. Freshw. Biol., 49, 16331649.CrossRefGoogle Scholar
Nagdali, S.S. and Gupta, P.K., 2002. Impact of mass mortality of a mosquito fish, Gambusia affinis on the ecology of a fresh water eutrophic lake (Lake Naini Tal, India). Hydrobiologia, 468, 4552.CrossRefGoogle Scholar
Økland, R.H. and Eilersten, O., 1994. Canonical correspondence analysis with variation partitioning: some comments and an application. J. Veg. Sci., 5, 117126.CrossRefGoogle Scholar
Post, D.M., Carpenter, S.R., Christensen, D.L., Cottingham, K.L., Kitchell, J.F., Schindler, D.E. and Hodgson, J.R., 1997. Seasonal effects of variable recruitment of a dominant piscivore on pelagic food web structure. Limnol. Oceanogr., 42, 722729.CrossRefGoogle Scholar
Prout, M.W., Mills, E.L. and Forney, J.L., 1990. Diet, growth, and potential competitive interactions between age-0 white perch and yellow perch in Oneida Lake, New York. Trans. Am. Fish Soc., 119, 966975.2.3.CO;2>CrossRefGoogle Scholar
Robinson, B.W., Wilson, D.S., Margosian, A.S. and Lotito, P.T., 1993. Ecological and morphological differentiation of pumpkinseed sunfish in lakes without bluegill sunfish. Evol. Ecol., 7, 451464.CrossRefGoogle Scholar
Romare, P. and Hansson, L.A., 2003. A behavioral cascade: top-predator induced behavioral shifts in planktivorous fish and zooplankton. Limnol. Oceanogr., 48, 19561964.CrossRefGoogle Scholar
Romare, P., Bergman, E. and Hansson, L.A., 1999. The impact of larval and juvenile fish on zooplankton and algal dynamics. Limnol. Oceanogr., 44, 16551666.CrossRefGoogle Scholar
Romo, S., Miracle, M.R., Villena, M.J., Rueda, J., Ferriol, C. and Vicente, E., 2004. Mesocosm experiments on nutrient and fish effects on shallow lake food webs in a Mediterranean climate. Freshw. Biol., 49, 15931607.CrossRefGoogle Scholar
Roseman, E.F., Mills, E.L., Forney, J.L. and Rudstam, L.G., 1996. Evaluation of competition between age-0 yellow perch (Perca flavescens) and gizzard shad (Dorosoma cepedianum) in Oneida Lake, New York. Can. J. Fish Aquat. Sci., 53, 865874.CrossRefGoogle Scholar
Ruesink, J.L., 2005. Global analysis of factors affecting the outcome of freshwater fish introductions. Conserv. Biol., 19, 18831893.CrossRefGoogle Scholar
Scheffer, M., 1998. Ecology of Shallow Lakes, Chapman and Hall, London.Google Scholar
Scheuerell, J.M., Schindler, D.E., Scheuerell, M.D., Fresh, K.L., Sibley, T.H., Litt, A.H. and Shepherd, J.H., 2005. Temporal dynamics in foraging behavior of a pelagic predator. Can. J. Fish Aquat. Sci., 62, 24942501.CrossRefGoogle Scholar
Tátrai, I., Mátyás, K., Korponai, J., Paulovits, G., Pomogyi, P. and Héri, J., 2003. Regulation of plankton by omnivore cyprinids in a shallow lake in the Kis-Balaton Reservoir System. Hydrobiologia, 504, 241250.CrossRefGoogle Scholar
Teixeira de Mello, F., Meerhoff, M., Pekcan-Hekim, Z. and Jeppesen, E., 2009. Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshw. Biol., 54, 12021215.CrossRefGoogle Scholar
ter Braak, C.J.F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 11671179.CrossRefGoogle Scholar
ter Braak, C.J.F., 1988. Partial canonical correspondence analysis. In: Bock, H.H. (ed.), Classification and Related Methods of Data Analysis, North-Holland, Amsterdam, 551558.Google Scholar
Williams, A.E. and Moss, B., 2003. Effects of different fish species and biomass on plankton interactions in a shallow lake. Hydrobiologia, 491, 331346.CrossRefGoogle Scholar
Wolfram-Wais, A., Wolfram, G., Auer, G., Mikschi, E. and Hain, A., 1999. Feeding habits of two introduced fish species (Lepomis gibbosus, Pseudorasbora parva) in Neusiedler See (Austria), with special reference to chironomid larvae (Diptera: Chironomidae). Hydrobiologia, 408/409, 123129.CrossRefGoogle Scholar