Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T15:04:01.832Z Has data issue: false hasContentIssue false

Responses in population growth and reproduction of the freshwater rotifer Brachionus calyciflorus to microcystin-LR at different temperatures

Published online by Cambridge University Press:  17 December 2012

Lin Huang
Affiliation:
Provincial Key Laboratories of Conservation and Utilization for Important Biological Resource in Anhui and Biotic Environment and Ecological Safety, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China College of Biological and Pharmaceutical Engineering, WestAnhui University, Lu'an, Anhui 237012, China
Yilong Xi*
Affiliation:
Provincial Key Laboratories of Conservation and Utilization for Important Biological Resource in Anhui and Biotic Environment and Ecological Safety, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
Xiaoping Xu
Affiliation:
Provincial Key Laboratories of Conservation and Utilization for Important Biological Resource in Anhui and Biotic Environment and Ecological Safety, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
Xinli Wen
Affiliation:
Provincial Key Laboratories of Conservation and Utilization for Important Biological Resource in Anhui and Biotic Environment and Ecological Safety, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
*
*Corresponding author: ylxi1965@yahoo.com.cn
Get access

Abstract

Microcystis blooms occur worldwide in eutrophic lakes. Microcystins (MCs) including microcystin-LR (MC-LR) released by Microcystis have adverse effects on aquatic organisms such as rotifers. To detect population growth and reproductive responses, the rotifer Brachionus calyciflorus was exposed to MC-LR at eight concentrations ranging from 0 to 200 μg.L−1 under different temperature (20, 25 and 30°C), and population growth rate (r), ovigerous females/non-ovigerous females (OF/NOF) ratio, mictic females/amictic females (MF/AF) ratio, mictic rate (MR), and 7-d resting egg (7-d RE) production were investigated. The results showed that higher temperatures stimulate the population growth of B. calyciflorus. B. calyciflorus showed high tolerance to MC-LR at concentrations lower than 200 μg.L−1 under different temperatures. Compared to the control, MC-LR at all concentrations increased the r (P<0.05), but decreased the OF/NOF and the MR of the rotifers at 30°C (P<0.01). A clear dose–response relationship existed between the r, the OF/NOF, and the MR of B. calyciflorus and MC-LR concentration at 30°C, respectively. These sensitive parameters could be used to monitor the ecological effects of low concentrations of MC-LR in natural water bodies at the high temperature.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, R., Luu, H.A., Chen, D.Z.X., Holmes, C.F.B., Kent, M., Le Blanc, M., Taylor, F.J.R. and Williams, D.E., 1993. Chemical and biological evidence links microcystins to salmon netpen liver disease. Toxicon, 31, 13151323.CrossRefGoogle Scholar
Andrew, T.E. and Andrew, J.A.M., 2005. Seasonality of rotifers and temperature in Lough Neagh,N. Ireland. Hydrobiologia, 546, 451455.CrossRefGoogle Scholar
Blaha, L., Babica, P. and Marsalek, B., 2009. Toxins produced in cyanobacterial water blooms – toxicity and risks. Interdiscip. Toxicol., 2, 3641.CrossRefGoogle ScholarPubMed
Briand, J.F., Jacquet, S., Bernard, C. and Humbert, J.F., 2003. Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Vet. Res., 34, 361377.CrossRefGoogle ScholarPubMed
Burkhardt-Holm, P., 2010. Endocrine disruptors and water quality: a state-of-the-art review. Int. J. Water Resources Dev., 26, 477493.CrossRefGoogle Scholar
Carmichael, W.W., 2001. Health effects of toxin-producing cyanobacteria: the cyano HABs. Hum. Ecol. Risk Assess., 7, 13931407.CrossRefGoogle Scholar
Carmichael, W.W. and Falconer, I.R., 1993. Diseases related to freshwater blue green algal toxins, and control measures. In: Falconer, I.R. (ed.), Algal Toxins in Seafood and Drinking Water, Academic, London, 187209.CrossRefGoogle Scholar
Carmichael, W.W., Azevedo, S.M., An, J.S., Molica, R.J.R., Jochimsen, E.M., Lau, S., Rinehart, K.L., Shaw, G.R. and Eaglesham, G.K., 2001. Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ. Health Perspect., 109, 663668.CrossRefGoogle ScholarPubMed
Cazenave, J., Bistoni, M.A., Zwirnmann, E., Wunderlin, D.A. and Wiegand, C., 2006. Attenuating effects of natural organic matter on microcystin toxicity in zebra fish (Danio rerio) embryos – benefits and costs of microcystin detoxication. Environ. Toxicol., 21, 2232.CrossRefGoogle ScholarPubMed
Chen, J., Zhang, D., Xie, P., Wang, Q. and Ma, Z., 2009a. Simultaneous determination of microcystin contaminations in various vertebrates (fish, turtle, duck and water bird) from a large eutrophic Chinese lake, Lake Taihu, with toxic Microcystis blooms. Sci. Total Environ., 407, 33173322.CrossRefGoogle ScholarPubMed
Chen, J., Xie, P., Li, L. and Xu, J., 2009b. First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage. Toxicol. Sci., 108, 8189.CrossRefGoogle ScholarPubMed
Chen, W., Song, L.R., Ou, D.Y. and Gan, N.Q., 2005. Chronic toxicity and responses of several important enzymes in Daphnia magna on exposure to sublethal microcystin-LR. Environ. Toxicol., 20, 323330.CrossRefGoogle ScholarPubMed
Chen, Y., Wang, J.Q., Wang, Y. and Yu, S.Z., 2002. Toxicity and population growth effects of microcystin on the rotifer Brachionus plicatilis. China Environ. Sci., 22, 198201 (in Chinese with English abstract).Google Scholar
Chorus, I. and Bartram, J., 1999. Toxic Cyanobacteria in Water: a Guide to their Public Health Consequences, Monitoring and Management, E & FN Spon, London.CrossRefGoogle Scholar
Claska, M.E. and Gilbert, J.J., 1998. The effect of temperature on the response of Daphnia to toxic cyanobacteria. Freshwater Biol., 39, 221232.CrossRefGoogle Scholar
Codd, G.A., 2000. Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control. Ecol. Eng., 16, 5160.CrossRefGoogle Scholar
Cohen, P., 1989. The structure and regulation of protein phosphatases. Annu. Rev. Biochem., 58, 435508.CrossRefGoogle ScholarPubMed
Dao, T.S., Do-Hong, L.C. and Wiegand, C., 2010. Chronic effects of cyanobacterial toxins on Daphnia magna and their offspring. Toxicon, 55, 12441254.CrossRefGoogle ScholarPubMed
DeMott, W.R., 1989. The role of competition in zooplankton succession. In: Sommer, U. (ed.), Plankton Ecology: Succession in Plankton Communities. Springer-Verlag, Berlin, 195252.CrossRefGoogle Scholar
DeMott, W.R., Zhang, Q.X. and Carmichael, W.W., 1991. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnol. Oceanogr., 36, 13461357.CrossRefGoogle Scholar
Fastner, J., Codd, G.A., Metcalf, J.S., Woitke, P., Wiedner, C. and Utkilen, H., 2002. An international intercomparison exercise for the determination of purified microcystin-LR and microcystins in cyanobacterial field material. Anal. Bioanal. Chem., 374, 437444.CrossRefGoogle ScholarPubMed
Forbes, V.E. and Calow, P., 1999. Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environ. Toxicol. Chem., 18, 15441556.CrossRefGoogle Scholar
Gama-Flores, J.L., Sarma, S.S.S. and Nandini, S., 2005. Interaction among copper toxicity, temperature and salinity on the population dynamics of Brachionus rotundiformis (Rotifera). Hydrobiologia, 546, 559568.CrossRefGoogle Scholar
Gan, N., Mi, L., Sun, X., Dai, G., Chung, F.L. and Song, L., 2010. Sulforaphane protects microcystin-LR-induced toxicity through activation of the Nrf2-mediated defensive response. Toxicol. Appl. Pharmacol., 47, 129137.CrossRefGoogle Scholar
Geng, H. and Zhu, X.S., 2008. Effect of temperature on the experimental population of Brachionus calyciflorus. J. South-Central Univ. National., 27, 2123 (in Chinese with English abstract).Google Scholar
Ghadouani, A., Pinel-Alloul, B., Plath, K., Codd, G.A. and Lampert, W., 2004. Effects of Microcystis aeruginosa and purified microcystin-LR on the feeding behavior of Daphnia pulicaria. Limnol. Oceanogr., 49, 666679.CrossRefGoogle Scholar
Gilbert, J.J., 1996. Effect of temperature on the response of planktonic rotifers to a toxic cyanobacterium. Ecology, 77, 11741180.CrossRefGoogle Scholar
Halbach, U., Siebert, M., Westermayer, M. and Wissel, C., 1983. Population ecology of rotifers as a bioassay tool for ecotoxicological tests in aquatic environments. Ecotoxicol. Environ. Saf., 7, 484513.CrossRefGoogle ScholarPubMed
Hansson, L.A., Gustafsson, S., Rengefors, K. and Bomark, L., 2007. Cyanobacterial chemical warfare affects zooplankton community composition. Freshwater Biol., 52, 12901301.CrossRefGoogle Scholar
Heugens, E.H.W., Hendriks, A.J., Dekker, T., van Stralen, N.M. and Admiraal, W., 2001. A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. Crit. Rev. Toxicol., 31, 247284.CrossRefGoogle Scholar
Hietala, J., Lauren-Maatta, C. and Walls, M., 1997. Sensitivity of Daphnia to toxic cyanobacteria: effects of genotype and temperature. Freshwater Biol., 37, 299306.CrossRefGoogle Scholar
Hoeger, S.J., Hitzfeld, B.C. and Dietrich, D.R., 2005. Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants. Toxicol. Appl. Pharmacol., 203, 231242.CrossRefGoogle ScholarPubMed
Huisman, J., Matthijs, H.P. and Visser, P.M., 2005. Harmful Cyanobacteria, Springer, Berlin.CrossRef
Hulot, F.D., Carmignac, D., Legendre, S., Yéprémian, C. and Bernard, C., 2012. Effects of microcystin-producing and microcystin-free strains of Planktothrix agardhii on long-term population dynamics of Daphnia magna. Ann. Limnol. - Int. J. Lim., 48, 337347.CrossRefGoogle Scholar
Janssen, C.R., Ferrando, M.D. and Persoone, G., 1993. Ecotoxicological studies with the freshwater rotifer Brachionus calyciflorus: I. Conceptual framework and application. Hydrobiologia, 255/256, 2132.CrossRefGoogle Scholar
Jöhnk, K.D., Huisman, J., Sharples, J., Sommeijer, B., Visser, P.M. and Stroom, J.M., 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Global Change Biol., 14, 495512.CrossRefGoogle Scholar
Jones, G.J. and Orr, P.T., 1994. Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Res., 28, 871876.CrossRefGoogle Scholar
Ke, L.X., Xi, Y.L., Zha, C.W. and Dong, L.L., 2009. Effects of three organophosphorus pesticides on population growth and sexual reproduction of rotifer Brachionus calycifiorus Pallas. Acta Ecol. Sin., 29, 182185.CrossRefGoogle Scholar
Lahti, K., Rapala, J., Färdig, M., Niemelä, M. and Sivonen, K., 1997. Persistence of cyanobacteria hepatotoxin microcystin-LR in particulate material and dissolved in lake water. Water Res., 31, 10051012.CrossRefGoogle Scholar
Lampert, W., 1987. Laboratory studies on zooplankton-cyanobacteria interactions. N. Z. J. Marine  Freshwater Res., 21, 483490.CrossRefGoogle Scholar
Lawton, L.A., Cornish, B.J.P.A. and MacDonald, A.W.R., 1998. Removal of cyanobacterial toxins (microcystins) and cyanobacterial cells from drinking water using domestic water filters. Water Res., 32, 633638.CrossRefGoogle Scholar
Li, S., Zhu, H., Xia, Y., Yu, M., Liu, K., Ye, Z. and Chen, Y., 1959. The mass culture of unicellular green algae. Acta Hydrobiol. Sin., 4, 462472 (in Chinese with English abstract).Google Scholar
Liu, H., Xie, P., Chen, F.Z., Tang, H.J. and Xie, L.Q., 2002. Enhancement of planktonic rotifers by Microcystis aeruginosa blooms: an enclosure experiment in a shallow Eutrophic Lake. J. Freshwater Ecol., 17, 239247.CrossRefGoogle Scholar
Liu, Y.M., Chen, W., Li, D.H., Shen, Y.W., Li, G.B. and Liu, Y.D., 2006. First report of aphantoxins in China – water blooms of toxigenic Aphanizomenon flos-aquae in Lake Dianchi. Ecotoxicol. Environ. Saf., 65, 8492.CrossRefGoogle ScholarPubMed
Lu, Z.H., Zhao, B.K., Yang, J.X. and Snell, T.W., 2012. Effects of atrazine and carbaryl on growth and reproduction of the rotifer Brachionus calyciflorus Pallas. J. Freshwater Ecol., 27, 527537.CrossRefGoogle Scholar
Lürling, M. and van der Grinten, E., 2003. Life history characteristics of Daphnia exposed to dissolved microcystin-LR and to the cyanobacterium Microcystis aeruginosa with and without microcystins. Environ. Toxicol. Chem., 22, 12811287.CrossRefGoogle ScholarPubMed
Marcial, S.H., Hagiwara, A. and Snell, T.W., 2005. Effect of some pesticides on reproduction of rotifer Brachionus plicatilis. Hydrobiologia, 546, 569575.CrossRefGoogle Scholar
Matsunaga, H., Harada, K.I., Senma, M., Ito, Y., Yasuda, N., Ushida, S. and Kimura, Y., 1999. Possible cause of unnatural mass death of wild birds in a pond in Nishinomiya, Japan: sudden appearance of toxic cyanobacteria. Nat. Toxins, 7, 8184.3.0.CO;2-O>CrossRefGoogle Scholar
Nandini, S., Picazo-Paez, E.A. and Sarma, S.S.S., 2007. The combined effects of heavy metals (copper and zinc), temperature and food (Chlorella vulgaris) level on the demographic characters of Moina macrocopa (Crustacea: Cladocera). J. Environ. Sci. Health Part A, 42, 14331442.CrossRefGoogle Scholar
Nogrady, T., Wallace, R.L. and Snell, T.W., 1993. Morphology and internal organization. In: Nogrady, T. (ed.), Rotifera, Vol. 1: Biology, Ecology and Systematics, SPB Academic Publishing, The Hague, 142 p. Google Scholar
Oliver, R.L. and Ganf, G.G., 2000. Freshwater blooms. In: Whitton, B.A. and Potts, M. (eds.), The Ecology of Cyanobacteria, Kluwer Academic Publishers, Dordrecht, The Netherlands, 149194.Google Scholar
Oziol, L. and Bouaïcha, N., 2010. First evidence of estrogenic potential of the cyanobacterial heptotoxins the nodularin-R and the microcystin-LR in cultured mammalian cells. J. Hazard. Mater., 174, 610615.CrossRefGoogle ScholarPubMed
Paerl, H.W. and Huisman, J., 2008. Blooms like it hot. Science, 320, 5758.CrossRefGoogle ScholarPubMed
Paerl, H.W., Fulton, R.S., Moisander, P.H. and Dyble, J., 2001. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World J., 1, 76113.CrossRefGoogle ScholarPubMed
Pavón-Meza, E.L., Sarma, S.S.S. and Nandini, S., 2005. Combined effects of algal (Chlorella vulgaris) food level and temperature on the demography of Brachionus havanaensis (Rotifera): a life table study. Hydrobiologia, 546, 353360.CrossRefGoogle Scholar
Pennak, R.W., 1989. Freshwater Invertebrates of the United States. The Ronald-Press Co., New York.Google Scholar
Pflugmacher, S., 2004. Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquatic Toxicol., 70, 169178.CrossRefGoogle ScholarPubMed
Porter, K.G. and Orcutt, J.D., 1980. Nutritional adequacy, manage ability, and toxicity as factors that determine the food quality of green and blue-green algae for Daphnia. In: Kerfoot, W.C. (ed.), Evolution and Ecology of Zooplankton Communities, University Press of New England, New Hampshire, 268281.Google Scholar
Pourriot, R. and Snell, T.W., 1983. Resting eggs of rotifers. Hydrobiologia, 104, 213224.CrossRefGoogle Scholar
Preston, B.L., Snell, T.W. and Roberston, T.L., 2000. Use of freshwater rotifer Brachionus calycifiorus in screening assay for potential endocrine disruptors. Environ. Toxicol. Chem., 19, 29232928.CrossRefGoogle Scholar
Qiu, T., Xie, P., Ke, Z., Li, L. and Guo, L., 2007. In situ studies on physiological and biochemical responses of four fishes with different trophic levels to toxic cyanobacterial blooms in a large Chinese lake. Toxicon, 50, 365376.CrossRefGoogle Scholar
Radix, P., Severin, G., Schamm, K.W. and Kettrup, A., 2002. Reproduction disturbances of Brachionus calyciflorus (rotifer) for the screening of environmental endocrine disruptors. Chemosphere, 47, 10971101.CrossRefGoogle Scholar
Rohrlack, T., Dittmann, E., Henning, M., Borner, T. and Kohl, J.G., 1999. Role of microcystins in poisoning and food ingestion inhibition of Daphnia galeata caused by the cyanobacterium Microcystis aeruginosa. Appl. Environ. Microbiol., 65, 737739.Google ScholarPubMed
Sivonen, K. and Jones, G., 1999. Cyanobacterial toxins. In: Chorus, I. and Bartram, J. (eds.), Toxic Cyanobacteria in Water–a Guide to Their Public Health Consequences, Monitoring and Management, E&FN Spon, London, 41111.Google Scholar
Sladecék, V., 1983. Rotifers as indicators of water quality. Hydrobiologia, 100, 169201.CrossRefGoogle Scholar
Snell, T.W. and Carmona, M.J., 1995. Comparative toxicant sensitivity of sexual and asexual reproduction in the rotifer Brachionus calyciflorus. Environ. Toxicol. Chem., 14, 415420.CrossRefGoogle Scholar
Snell, T.W. and Janssen, C.R., 1995. Rotifers in ecotoxicology: a review. Hydrobiologia, 313/314, 231247.CrossRefGoogle Scholar
Stelzer, C.P., 1998. Population growth in planktonic rotifers. Does temperature shift the competitive advantage for different species? Hydrobiologia, 387/388, 349353.CrossRefGoogle Scholar
Stephan, C.E. and Rogers, J.R., 1985. Advantages of using regression analysis to calculate results of chronic toxicity test. In: Bahner, R.C. and Hansen, D.J.H. (eds.), Aquatic Toxicology and Hazard Assessment: Eight Symposium, American Society for Testing and Materials, Philadelphia, 328339.CrossRefGoogle Scholar
Svrcek, C. and Smith, D.W., 2004. Cyanobacteria toxins and the current state of knowledge on water treatment options: a review. J. Environ. Eng. Sci., 3, 155185.CrossRefGoogle Scholar
Tillmanns, A.R., Wilson, A.E., Pick, F.R. and Sarnelle, O., 2008. Meta-analysis of cyanobacterial effects on zooplankton population growth rate: species-specific responses. Fundam. Appl. Limnology, 171, 285295.CrossRefGoogle Scholar
USEPA, 1985. Methods for Measuring the Acute Toxicity of Effluents to Freshwaater and Marine Organisms, In: Peltier, W.H. and Weber, C.I. (eds.), US Environmental Protect Agency, Washington, DC. EPA/600/4–85/013, 216 p.Google Scholar
van Apeldoorn, M.E., van Egmond, H.P., Speijers, G.J.A. and Bakker, G.J.I., 2007. Toxins of cyanobacteria. Mol. Nutr. Food Res., 51, 760.CrossRefGoogle ScholarPubMed
Vareli, K., Briasoulis, E., Pilidis, G. and Sainis, I., 2009. Molecular confirmation of Planktothrix rubescens as the cause of intense microcystins-Synthesizing cyanobacterial bloom in Lake Ziros, Greece. Harmful Algae, 8, 447453.CrossRefGoogle Scholar
Vasconcelos, V.M. and Pereira, E., 2001. Cyanobacteria diversity and toxicity in a wastewater treatment plant (Portugal). Water Res., 35, 13541357.CrossRefGoogle Scholar
Wen, X.L., Xi, Y.L., Yang, Y.F., Zhang, X.A. and Zhang, G., 2011. Temperature is the key factor controlling population dynamics of Brachionus angularis in Lake Jinghu during summer and autumn. J. Freshwater Ecol., 26, 22772286.CrossRefGoogle Scholar
WHO, 1998. Guidelines for Safe Recreational Water Environments: Coastal and Freshwaters, World Heath Organization, Geneva.
Wilson, A.E., Sarnelle, O. and Tillmanns, A.R., 2006. Effects of cyanobacterial toxicity and morphology on the population growth of freshwater zooplankton: Meta-analyses of laboratory experiments. Limnol. Oceanogr., 51, 19151924.CrossRefGoogle Scholar
Xi, Y.L. and Feng, L.K., 2004. Effects of thiophanate-methyl and glyphosate on asexual and sexual reproduction in the rotifer Brachionus calycifiorus Pallas. Bull. Environ. Contam. Toxicol., 73, 644651.CrossRefGoogle ScholarPubMed
Xi, Y.L., Chu, Z.X. and Xu, X.P., 2007. Effect of four organochlorine pesticides on the reproduction of freshwater rotifer Brachionus calyciflorus pallas. Environ. Toxicol. Chem., 26, 16951699.CrossRefGoogle ScholarPubMed
Xie, L., Xie, P., Guo, L., Li, L., Miyabara, Y. and Park, H., 2005. Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China. Environ. Toxicol., 20, 293300.CrossRefGoogle ScholarPubMed
Yang, Z., , K., Chen, Y. and Montagnes, D.J.S., 2012. The interactive effects of ammonia and microcystin on life-history traits of the cladoceran Daphnia magna: synergistic or antagonistic? PLoS ONE, 7, e32285.CrossRefGoogle ScholarPubMed
Yang, Z., Xiang, F.H., Minter, E.J.A., , K., Chen, Y.F. and Montagnes, D.J.S., 2011. The interactive effects of microcystin and nitrite on life-history parameters of the cladoceran Daphnia obtusa. J. Hazard. Mater., 190, 113118.CrossRefGoogle ScholarPubMed
Ye, W.J., Liu, X.L., Tan, J., Li, D.T. and Yang, H., 2009. Diversity and dynamic of microcystin-producing cyanobacteria in China's third largest lake, Lake Taihu. Harmful Algae, 8, 637644.CrossRefGoogle Scholar
Yin, X.W. and Zhao, W., 2008. Studies on life history characteristics of Brachionus plicatilis O. F. Müller (Rotifera) in relation to temperature, salinity and food algae. Aquat. Ecol., 42, 165176.CrossRefGoogle Scholar
Zar, J.H., 1999. Biostatistical Analysis, Vol. 4, Prentice Hall, New Jersey, 663 p.
Zhang, S.Y., Cheng, S.P., He, F., Zhuang, D.H. and Wu, Z.B., 2008. Studies on the toxic effects of filtered cyanobacteria culture media of two different strains (microcystin-producing and microcystin-free) of Microcystis Aeruginosa on Daphnia Magna. Acta Hydrobiol. Sin., 32, 637642 (in Chinese with English abstract).CrossRefGoogle Scholar
Zhang, X. and Geng, H., 2012. Effect of Microcystis aeruginosa on the rotifer Brachionus calycifiorus at different temperatures. Bull. Environ. Contam. Toxicol., 88, 2024.CrossRefGoogle ScholarPubMed
Zimba, P.V., Khoo, L., Gaunt, P., Carmichael, W.W. and Brittain, S., 2001. Confirmation of catfish, Lctalurus punctatus (Rafinesque), mortality from microcystins toxins. J. Fish Dis., 24, 4147.CrossRefGoogle Scholar
Zurawell, R.W., Chen, H., Burke, J.M. and Prepas, E.E., 2004. Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. J. Toxicol. Environ. Health Part B Crit. Rev., 8, 137.CrossRefGoogle ScholarPubMed