Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T08:03:50.729Z Has data issue: false hasContentIssue false

Responses in the population growth and reproduction of freshwater rotifer Brachionus calyciflorus to four organochlorine pesticides

Published online by Cambridge University Press:  13 May 2013

Lin Huang
Affiliation:
College of Life Sciences, Anhui Normal University, Provincial Key Laboratories of Conservation and Utilization for Important Biological Resource in Anhui and Biotic Environment and Ecological Safety, Wuhu, Anhui 241000, China College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China
Yilong Xi*
Affiliation:
College of Life Sciences, Anhui Normal University, Provincial Key Laboratories of Conservation and Utilization for Important Biological Resource in Anhui and Biotic Environment and Ecological Safety, Wuhu, Anhui 241000, China
Chunwang Zha
Affiliation:
College of Life Sciences, Anhui Normal University, Provincial Key Laboratories of Conservation and Utilization for Important Biological Resource in Anhui and Biotic Environment and Ecological Safety, Wuhu, Anhui 241000, China
Xinli Wen
Affiliation:
College of Life Sciences, Anhui Normal University, Provincial Key Laboratories of Conservation and Utilization for Important Biological Resource in Anhui and Biotic Environment and Ecological Safety, Wuhu, Anhui 241000, China
*
*Corresponding author: ylxi1965@yahoo.com.cn
Get access

Abstract

In China, although the production and use of organochlorine pesticides (OCPs) have been banned for decades, relatively high levels of OCP residues have still been found in some water bodies, and can result in adverse acute and chronic effects on zooplankton including rotifers, which have  caused public concern for many years. Responses in the population growth and reproduction of freshwater rotifer Brachionus calyciflorus to four OCPs including aldrin, dieldrin, β-hexachlorocyclohexane (β-HCH) and chlordecone were studied by 3-day population growth and 4-day resting eggs (RE) production tests. In comparison with control, aldrin at 10 μg.L−1, β-HCH at 1000 μg.L−1 and chlordecone at 0.05 μg.L−1 significantly increased the population growth rate (r); but aldrin at 100 μg.L−1, dieldrin at 0.001 and 0.1 μg.L−1, β-HCH at 0.1–100 μg.L−1 and chlordecone at 50 μg.L−1 markedly decreased it. Aldrin at concentrations higher than 1 μg.L−1, dieldrin at 0.01 and 1000 μg.L−1, β-HCH at concentrations 0.1 and higher than 1 μg.L−1, and chlordecone at concentrations 0.005 and higher than 0.5 μg.L−1 significantly decreased the ratio of ovigerous females to non-ovigerous females (OF/NOF), but the reverse was true for aldrin at 0.1 μg.L−1 and β-HCH at 0.001 μg.L−1. Dieldrin at 0.001, 0.01 and 1000 μg.L−1 significantly decreased the ratio of mictic females to amictic females (MF/AF), but β-HCH at 1 and 10 μg.L−1 highly significantly increased it. Dieldrin at 1000 μg.L−1 and β-HCH at concentrations higher than 10 μg.L−1 markedly decreased the fertilization rate (FR). Both aldrin and chlordecone have no significant effect on the MF/AF and FR of rotifers. Aldrin at concentrations higher than 1 μg.L−1, dieldrin at lower than 0.1 and higher than 10 μg.L−1, β-HCH at 1000 μg.L−1 and chlordecone at 0.005, 0.05 and 50.0 μg.L−1 significantly decreased the mictic rate (MR) of rotifers, but the reverse was true for β-HCH at 1 μg.L−1. Aldrin at 10 μg.L−1, dieldrin at 0.001, 0.1 and 1000 μg.L−1, β-HCH at concentrations higher than 1 μg.L−1 and chlordecone at concentrations higher than 0.005 μg.L−1 markedly decreased RE production of rotifers, but β-HCH at 0.01 μg.L−1 significantly increased it. A clear dose–response relationship existed between the RE and the concentration of dieldrin, β-HCH and chlordecone, and the OF/NOF and the aldrin concentration. The RE and OF/NOF in rotifer population might be suitable endpoints for monitoring the low concentration of three OCPs (dieldrin, β-HCH and chlordecone) and aldrin, respectively.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, N., Fu, Y.Q., Wang, Y.M., Chen, C., Niu, F., Han, Y. and Dong, S.Y., 2010. Residual levels of HCH and DDT in Songhua river water, soil and foodstuff (in Chinese with an English abstract). J. Environ. Heal., 27, 335338.Google Scholar
Birky, C.W. and Gilbert, J.J., 1971. Parthenogenesis in rotifers: the control of sexual and asexual reproduction. Am. Zool., 11, 245246.CrossRefGoogle Scholar
Calabrese, E.J. and Baldwin, L.A., 2003. Inorganics and hormesis. Crit. Rev. Toxicol., 33, 215304.CrossRefGoogle ScholarPubMed
Cheng, X., 1990. The pesticides production of China Going to a period of higher efficient and more secure (in Chinese with an English abstract). Pesticides, 29, 1519.Google Scholar
Chu, Z.X., Xi, Y.L. and Xu, X.P., 2005. Effect of glyphosate on the life history characteristics of freshwater rotifer Brachionus calyciflorus pallas (in Chinese with an English abstract). Chin. J. Appl. Ecol., 16, 11421145.Google Scholar
Dodson, S.I. and Frey, D.G., 2000. Cladocera and other branchiopoda. In: Thorp, J.H. and Covich, A.P. (eds), Ecology and Classification of North American Freshwater Invertebrates, Academic Press, London, 850914.Google Scholar
Fernandez-Casalderrey, A., Ferrando, M.D. and Andreu-Moliner, E., 1992. Acute toxicity of several pesticides to rotifer Brachionus calyciflorus. Bull. Environ. Contam. Toxicol., 48, 1417.Google Scholar
Gallardo, W.G., Hagiwara, A., Tomita, Y., Soyano, K. and Snell, T.W., 1997. Effect of some vertebrate and invertebrate hormones on the population growth, mictic female production, and body size of the marine rotifer Brachionus plicatilis Müller. Hydrobiologia, 358, 113120.CrossRefGoogle Scholar
Gama-Flores, J.L., Castellanos-Paez, M.E., Sarma, S.S.S. and Nandini, S., 2007. Effect of pulsed exposure to heavy metals (copper and cadmium) on some population variables of Brachionus calyciflorus Pallas (Rotifera: Brachionidae: Monogononta). Hydrobiologia, 593, 201208.CrossRefGoogle Scholar
Guo, R.X., Ren, X.K. and Ren, H.Q., 2012a. Assessment the toxic effects of dimethoate to rotifer using swimming behavior. Bull. Environ. Contam. Toxicol., 89, 568571.CrossRefGoogle ScholarPubMed
Guo, R.X., Ren, X.K. and Ren, H.Q., 2012b. Effects of dimethoate on rotifer Brachionus calyciflorus using multigeneration toxicity tests. J. Environ. Sci. Heal. B, 47, 883890.CrossRefGoogle Scholar
Halbach, U., 1984. Population dynamics of rotifers and its consequences for ecotoxicology. Hydrobiologia, 109, 7996.CrossRefGoogle Scholar
Heberer, T., 2002. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol. Lett., 13, 1517.Google Scholar
Huang, L., Xi, Y.L., Zha, C.W. and Zhao, L.L., 2007. Effect of aldrin on life history characteristics of rotifer Brachionus calyciflorus Pallas. Bull. Environ. Contam. Toxicol., 79, 524528.CrossRefGoogle ScholarPubMed
Huang, L., Liu, C.L., Wei, C.B. and Xia, L., 2011. Effects of cypermethrin and deltamethrin on reproduction of Brachionus calyciflorus (in Chinese with an English abstract). Acta Ecol. Sin., 31, 76327638.Google Scholar
Huang, L., Xi, Y.L., Zha, C.W., Zhao, L.L. and Wen, X.L., 2012. Effects of dieldrin and 17β-estradiol on life history characteristics of freshwater rotifer Brachionus calyciflorus Pallas. J. Freshwat. Ecol., 27, 381392.CrossRefGoogle Scholar
Janssen, C.R., Ferrando, M.D. and Persoone, G., 1993. Ecotoxicological studies with the freshwater rotifer Brachionus calyciflorus: I. Conceptual framework and application. Hydrobiologia, 255/256, 2132.CrossRefGoogle Scholar
Janssen, C.R., Persoone, G. and Snell, T.W., 1994. Cyst-based toxicity tests.VIII. Short-chronic toxicity tests with the freshwater rotifer Brachionus calyciflorus. Aquat. Toxicol., 28, 243258.CrossRefGoogle Scholar
King, C.E. and Snell, T.W., 1977. Sexual recombination in rotifers. Heredity, 39, 357360.CrossRefGoogle Scholar
Koste, W., 1978. Rotatoria. Die Rädertiere Mitteleuropas. Ein Bestimmungswerk begründet von Max Voigt, Bornträger, Stuttgart, Vol. 1: Textband 673 p., Vol. 2: Tafelband 234 p.Google Scholar
Lampert, W. and Sommer, U., 1997. Limnoecology. The Ecology of Lakes and Streams, Oxford University Press, New York, 382 p.Google Scholar
Li, S., Zhu, H., Xia, Y., Yu, M., Liu, K., Ye, Z. and Chen, Y., 1959. The mass culture of unicellular green algae. Acta Hydrobiol. Sin., 4, 462472.Google Scholar
Li, Y.F., Cai, D.J. and Singh, A., 1998. Technical hexachlorocyclohexane use trends in China and their impact on the environment. Arch. Environ. Contam. Toxicol., 35, 688697.CrossRefGoogle ScholarPubMed
Li, Y.F., Macdonald, R.W., Jantunen, L.M.M., Harner, T., Bidleman, T.F. and Strachan, W.M.J., 2002. The transport of β-hexachlorocyclohexane to the western Artic Ocean: a contrast to α-HCH. Sci. Total Environ., 291, 229246.CrossRefGoogle Scholar
Lin, Y.S., Gong, R.Z. and Zhu, Z.L., 2000. Pesticides and Eco-Environmental Protection, Chemical Industry Press, Beijing, China.Google Scholar
Lu, Z.H., Zhao, B.K., Yang, J.X. and Snell, T.W., 2012. Effects of atrazine and carbaryl on growth and reproduction of the rotifer Brachionus calyciflorus Pallas. J. Freshwat. Ecol., 27, 527537.CrossRefGoogle Scholar
Lubzens, E., Minkoff, G. and Marom, S., 1985. Salinity dependence of sexual and asexual reproduction in the rotifer Brachionus plicatilis. Mar. Biol., 85, 123126.CrossRefGoogle Scholar
Mangas-Ramírez, E., Sarma, S.S.S. and Nandini, S., 2004. Recovery patterns of Moina macrocopa exposed previously to different concentrations of cadmium and methyl parathion: life table demography and population growth studies. Hydrobiologia, 526, 255265.CrossRefGoogle Scholar
Marcial, H.S., Hagiwara, A. and Snell, T.W., 2005. Effect of some pesticides on reproduction of rotifer Brachionus plicatilis Muller. Hydrobiologia, 546, 569575.CrossRefGoogle Scholar
Pennak, R.W., 1989. Freshwater Invertebrates of the United States, The Ronald-Press Co., New York.Google Scholar
Pourriot, R. and Snell, T.W., 1983. Resting eggs of rotifers. Hydrobiologia, 104, 213224.CrossRefGoogle Scholar
Preston, B.L. and Snell, T.W., 2001. Full life cycle toxicity assessment using rotifer resting egg production: implication for ecological risk assessment. Environ. Pollut., 114, 399406.CrossRefGoogle Scholar
Preston, B.L., Snell, T.W., Roberston, T.L. and Dingmann, B.J., 2000. Use of freshwater rotifer Brachionus calyciflorus in screening assay for potential endocrine disruptors. Environ. Toxicol. Chem., 19, 10971101.CrossRefGoogle Scholar
Radix, P., Severin, G., Schamm, K.W. and Kettrup, A., 2002. Reproduction disturbances of Brachionus calyciflorus (rotifer) for the screening of environmental endocrine disruptors. Chemosphere, 47, 10971101.CrossRefGoogle Scholar
Rao, T.R. and Sarma, S.S.S., 1986. Demographic parameters of Brachionus patulus Müller (Rotifera) exposed to sublethal DDT concentration at low and high food levels. Hydrobiologia, 139, 193200.Google Scholar
Rao, T.R. and Sarma, S.S.S., 1990. Interaction of Chlorella density and DDT concentration on the population dynamics of the rotifer, Brachionus patulus (Rotifera). Indian J. Environ. Health, 32, 157160.Google Scholar
Rumengan, I.F.M. and Ohji, M., 2012. Ecotoxicological risk of organotin compounds on zooplankton community. Coastal Marine Science, 35, 129135.Google Scholar
Sarma, S.S.S. and Nandini, S., 2001. Life table demography and population growth of Brachionus variabilis Hampel,1896 in relation to algal (Chlorella vulgaris) density. Hydrobiologia, 446/447, 7583.CrossRefGoogle Scholar
Snell, T.W., 1986. Effect of temperature, salinity and food level on sexual and asexual reproduction in Brachionus plicatilis (Rotifera). Mar. Biol., 92, 157162.CrossRefGoogle Scholar
Snell, T.W. and Boyer, E.M., 1988. Thresholds for mictic female production in the rotifer Brachionus plicatilis (Müller). J. Exp. Mar. Biol. Ecol., 124, 7385.CrossRefGoogle Scholar
Snell, T.W. and Carmona, M.J., 1995. Comparative toxicant sensitivity of sexual and asexual reproduction in the rotifer Brachionus calyciflorus. Environ. Toxicol. Chem., 14, 415420.CrossRefGoogle Scholar
Snell, T.W. and Janssen, C.R., 1995. Rotifers in Ecotoxicology: a review. Hydrobiologia, 313/314, 231247.CrossRefGoogle Scholar
Snell, T.W. and Moffat, B.D., 1992. A 2-d life cycle test with rotifer Brachionus calyciflorus. Environ. Toxicol. Chem., 11, 12491257.CrossRefGoogle Scholar
Stephan, C.E. and Rogers, J.R., 1985. Advantages of using regression analysis to calculate results of chronic toxicity test. In: Bahner, R.C. and Hansen, D.J.H. (eds.), Aquatic Toxicology and Hazard Assessment: Eight Symposium, American Society for Testing and Materials, Philadelphia, 328339.CrossRefGoogle Scholar
USEPA, 1985. In: Peltier, W.H. and Weber, C.I. (eds.) Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms. EPA/600/4-85/013, US Environmental Protection Agency, Washington, DC, 216 p.Google Scholar
Wallace, R.L., Snell, T.W., Ricci, C. and Nogrady, T., 2006. Rotifera Part 1: Biology, Ecology and Systematics. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World (Zooplankton Guides). Kenobi Productions, Ghent, Belgium/Backhuys Publishers, The Hague, The Netherlands.Google Scholar
Wen, X.L., Xi, Y.L., Yang, Y.F., Zhang, G., Zhang, Q. and Hu, Y.H., 2011. Effect of melamine on the reproductive strategy of rotifer Brachionus calyciflorus. Chin. J. Zool., 46, 6267.Google Scholar
Wong, C.K.C., Leung, K.M., Poon, B.H.T., Lan, C.Y. and Wong, M.H., 2002. Organochlorine hydrocarbons in human breast milk collected in Hong Kong andGuangzhou. Arch. Environ. Contam. Toxicol., 43, 364372.CrossRefGoogle Scholar
Xi, Y.L. and Feng, L.K., 2004. Effects of thiophanate-methyl and glyphosate on asexual and sexual reproduction in the rotifer Brachionus calyciflrorus pallas. Bull. Environ. Contam. Toxicol., 73, 644651.CrossRefGoogle ScholarPubMed
Xi, Y.L., Chu, Z.X. and Xu, X.P., 2007. Effect of four organochlorine pesticides on the reproduction of freshwater rotifer Brachionus calyciflorus pallas. Environ. Toxicol. Chem., 26, 16951699.CrossRefGoogle ScholarPubMed
Xu, X.P., Xi, Y.L., Chu, Z.X. and Chen, F., 2005. The effect of deltamethin on experimental population dynamics of freshwater rotifer Brachionus calyciflorus (in Chinese with an English abstract). Acta Zool. Sin., 51, 251256.Google Scholar
Xue, N.D., Xu, X.B. and Jin, Z.L., 2005. Screening 31 endocrine-disrupting pesticides in water and surface sediment samples from Beijing Guanting Reservoir. Chemosphere, 61, 15941606.CrossRefGoogle ScholarPubMed
Zar, J.H., 1999. Biostatistical Analysis, Vol. 4: Prentice Hall, Upper Saddle River, NJ, USA.Google Scholar
Zha, C.W., Xi, Y.L., Huang, L. and Zhao, L.L., 2007. Effect of sublethal exposure to chlordecone on life history characteristics of freshwater rotifer Brachionus calyciflorus Pallas. Bull. Environ. Contam. Toxicol., 78, 7983.CrossRefGoogle ScholarPubMed
Zhao, L.L., Xi, Y.L., Huang, L. and Zha, C.W., 2007. Effects of phthalate acid esters on population growth and sexual reproduction of rotifers Brachionus calyciflorus (in Chinese with an English abstract). Acta Zool. Sin., 53, 250256.Google Scholar
Zhong, W.K., Hao, J., Sun, M.X. and Chen, Y.L., 2000. Pesticides residues in food in China. Pesticide, 39, 14.Google Scholar
Zhou, R.B., Zhu, L.Z. and Chen, Y.Y., 2008. Levels and source of organochlorine pesticides in surface waters of Qiantang River, China. Environ. Monit. Assess, 136, 27787.CrossRefGoogle ScholarPubMed
Zou, E.M., 2003. Current status of environmental endocrine disruption in selected aquatic invertebrates. Acta Zool. Sin., 49, 551565.Google Scholar