Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T11:54:11.721Z Has data issue: false hasContentIssue false

Role of the hyporheic heterotrophic biofilm on transformation and toxicity of pesticides

Published online by Cambridge University Press:  16 May 2013

J.M. Sánchez-Pérez*
Affiliation:
University of Toulouse, INPT, UPS, Laboratoire Ecologie Fonctionnelle et Environnement (EcoLab), Avenue de l'Agrobiopole, 31326 Castanet Tolosan Cedex, France CNRS, EcoLab, 31326 Castanet Tolosan Cedex, France
B. Montuelle
Affiliation:
IRSTEA Lyon, UR Qualité des Eaux, 3 bis quai Chauveau, CP 220, 69336 LYON Cedex 09, France Present address: INR-UMR Carrtel, 75 av. de Corzent – BP 511, 74203 Thonon, France
F. Mouchet
Affiliation:
University of Toulouse, INPT, UPS, Laboratoire Ecologie Fonctionnelle et Environnement (EcoLab), Avenue de l'Agrobiopole, 31326 Castanet Tolosan Cedex, France CNRS, EcoLab, 31326 Castanet Tolosan Cedex, France
L. Gauthier
Affiliation:
University of Toulouse, INPT, UPS, Laboratoire Ecologie Fonctionnelle et Environnement (EcoLab), Avenue de l'Agrobiopole, 31326 Castanet Tolosan Cedex, France CNRS, EcoLab, 31326 Castanet Tolosan Cedex, France
F. Julien
Affiliation:
University of Toulouse, INPT, UPS, Laboratoire Ecologie Fonctionnelle et Environnement (EcoLab), Avenue de l'Agrobiopole, 31326 Castanet Tolosan Cedex, France CNRS, EcoLab, 31326 Castanet Tolosan Cedex, France
S. Sauvage
Affiliation:
University of Toulouse, INPT, UPS, Laboratoire Ecologie Fonctionnelle et Environnement (EcoLab), Avenue de l'Agrobiopole, 31326 Castanet Tolosan Cedex, France CNRS, EcoLab, 31326 Castanet Tolosan Cedex, France
S. Teissier
Affiliation:
University of Toulouse, INPT, UPS, Laboratoire Ecologie Fonctionnelle et Environnement (EcoLab), Avenue de l'Agrobiopole, 31326 Castanet Tolosan Cedex, France CNRS, EcoLab, 31326 Castanet Tolosan Cedex, France
K. Dedieu
Affiliation:
University of Toulouse, INPT, UPS, Laboratoire Ecologie Fonctionnelle et Environnement (EcoLab), Avenue de l'Agrobiopole, 31326 Castanet Tolosan Cedex, France CNRS, EcoLab, 31326 Castanet Tolosan Cedex, France
D. Destrieux
Affiliation:
University of Toulouse, INPT, UPS, Laboratoire Ecologie Fonctionnelle et Environnement (EcoLab), Avenue de l'Agrobiopole, 31326 Castanet Tolosan Cedex, France CNRS, EcoLab, 31326 Castanet Tolosan Cedex, France
P. Vervier
Affiliation:
University of Toulouse, INPT, UPS, Laboratoire Ecologie Fonctionnelle et Environnement (EcoLab), Avenue de l'Agrobiopole, 31326 Castanet Tolosan Cedex, France CNRS, EcoLab, 31326 Castanet Tolosan Cedex, France
M. Gerino
Affiliation:
University of Toulouse, INPT, UPS, Laboratoire Ecologie Fonctionnelle et Environnement (EcoLab), Avenue de l'Agrobiopole, 31326 Castanet Tolosan Cedex, France CNRS, EcoLab, 31326 Castanet Tolosan Cedex, France
*
*Corresponding author: jose.sanchez@univ-tlse3.fr
Get access

Abstract

The role of heterotrophic biofilm of water–sediment interface in detoxification processes was tested in abiotic and biotic conditions under laboratory conditions. Three toxicants, a herbicide (Diuron), a fungicide (Dimethomorph) and an insecticide (Chlorpyrifos-ethyl) have been tested in water percolating into columns reproducing hyporheic sediment. The detoxification processes were tested by comparing the water quality after 18 days of percolation with and without heterotrophic biofilm. Tested concentrations were 30 μg.L−1 of Diuron diluted in 0.1% dimethyl sulfoxide (DMSO), 2 μg.L−1 of Dimethomorph and 0.1 μg.L−1 of Chlorpyrifos-ethyl. To characterise the detoxification efficiency of the system, we performed  genotoxicity bioassays in amphibian larvae and rotifers and measured the respiration and denitrification of sediments. Although the presence of biofilm increased the production of N-(3,4 dichlorophenyl)-N-(methyl)-urea, a metabolite of diuron, the toxicity did not decrease irrespective of the bioassay. In the presence of biofilm, Dimethomorph concentrations decreased compared with abiotic conditions, from 2 μg.L−1 to 0.4 μg.L−1 after 18 days of percolation. For both Dimethomorph and Chlorpyrifos-ethyl additions, assessment of detoxification level by the biofilm depended on the test used: detoxification effect was found with amphibian larvae bioassay and no detoxification was observed with the rotifer test. Heterotrophic biofilm exerts a major influence in the biochemical transformation of contaminants such as pesticides, suggesting that the interface between running water and sediment plays a role in self-purification of stream reaches.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AFNOR (Association française de normalisation; the French National Organization for quality regulations) 2000. Norme NFT 90- 325. Qualité de l'Eau. Evaluation de la genotoxicité au moyen de larves d'amphibien (Xenopus laevis, Pleurodeles waltl). ICS : 13.020.40 ; 13.060.70. Norme française homologuée, Septembre 2000, Paris: AFNOR. 17.
Baker, M.A., Dahm, C.N. and Valett, H.M., 2000. Anoxia, anaerobic metabolism, and biogeochemistry of the stream-water–groundwater interface. In: Jones, J.B. and Mulholland, P.J. (eds.), Streams and Ground Waters, Academic Press, Boston, 259283.CrossRefGoogle Scholar
Battin, T.J., Kaplan, L.A., Newbold, J.D. and Hendricks, S.P., 2003. A mixing model analysis of stream solute dynamics and the contribution of a hyporheic zone to ecosystem function. Freshwater Biol., 48, 120.CrossRefGoogle Scholar
Baumgarten, B., Jährig, J., Reemtsma, T. and Jekel, M., 2011. Long term laboratory column experiments to simulate bank filtration: factors controlling removal of sulfamethoxazole. Water Res., 45, 211220.CrossRefGoogle Scholar
Bogaerts, P., Bohatier, J., Bonnemoy, F., Cuer, A., Sancelme, M., Tixier, C., Twagilimana, L. and Veschambre, H., 2000. Fungal biodegradation of a phenylurea herbicide, diuron: structure and toxicity of metabolites. Pest Manage. Sci., 56, 455462.Google Scholar
Bonnemoy, F., Cuer, A., Sancelme, M., Tixier, C. and Veschambre, H., 2001. Degradation products of a phenylurea herbicide, diuron: synthesis, ecotoxicity and biotransformation. Environ. Toxicol. Chem., 30, 13811389.Google Scholar
Boulton, A.J., Findlay, S., Marmonier, P., Stanley, E.H. and Valett, H.M., 1998. The functional significance of the hyporheic zone in streams and rivers. Annu. Rev. Ecol. Syst., 29, 5981.CrossRefGoogle Scholar
Brugger, A., Reitner, B., Kolar, I., Quéric, N. and Herndl, G.J., 2001. Seasonal and spatial distribution of dissolved and particulate organic carbon and bacteria in the bank of an impounding reservoir on the Enns River, Austria. Freshwater Biol., 46, 9971016.CrossRefGoogle Scholar
Brunke, M. and Gonser, T., 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biol., 37, 133.CrossRefGoogle Scholar
Devault, D., Gerino, M., Laplanche, C., Julien, F., Winterton, P., Merlina, G., Delmas, F., Lim, P., Sanchez Perez, J.M. and Pinelli, E., 2009. Herbicide accumulation and evolution in reservoir sediments. Sci. Total Environ., 407, 26592665.CrossRefGoogle ScholarPubMed
Everard, M. and Powell, A., 2002. Rivers as living systems. Aquatic Conserv. Mar. Freshw. Ecosyst., 12, 329337.CrossRefGoogle Scholar
Findlay, S., 1995. Importance of surface-subsurface exchange in stream ecosystems: the hyporheic zone. Limnol. Oceanogr., 40, 159164.CrossRefGoogle Scholar
Furutani, A., Rudd, J.W.N. and Kelly, C.A., 1984. A method for measuring the response of sediments microbial communities to environmental perturbations. Can. J. Microbiol., 30, 14081414.CrossRefGoogle Scholar
Gavrilescu, M., 2005. Fate of pesticide in the environment and its bioremediation. Eng. Life Sci., 5, 497526.CrossRefGoogle Scholar
Giesy, J.P., Solomon, K.R., Coats, J.R., Dixon, K.R., Giddings, J.M. and Kenaga, E.E., 1999. Chlorpyrifos: ecological risk assessment in North American aquatic environments. Rev. Environ. Contam. Toxicol., 160, 1129.Google ScholarPubMed
Gifford, S., Hugh, D. and O'Connor, W., 2007. Aquatic zooremediation deploying animals to remediate contaminated aquatic environments. Trends Biotechnol., 25, 6065.CrossRefGoogle ScholarPubMed
Gordeliy, V.I., Keselev, M.A., Lesieur, P., Pole, A.V. and Teixera, J., 1998. Lipid membrane structure and interaction in DMSO/water mixtures. Biophys. J., 75, 23432351.CrossRefGoogle Scholar
Griebler, C. and Slezak, D., 2001. Microbial activity in aquatic environments measured by DMSO reduction and intercomparison with commonly used methods. Appl. Environ. Microbiol., 67, 100109.CrossRefGoogle ScholarPubMed
Grimm, N.B. and Fisher, S.G., 1984. Exchange between interstitial and surface water: implications for stream metabolism and nutrient cycling. Hydrobiologia, 111, 219228.CrossRefGoogle Scholar
Gruenheid, S., Amy, G. and Jekel, M., 2005. Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge. Water Res., 39, 32193228.CrossRefGoogle Scholar
House, W.A., Leach, D.V. and Armitage, P.D., 2001. Study dissolved silicon and nitrate dynamics in a freshwater stream. Water Res., 35, 27492757.CrossRefGoogle Scholar
Hunter, K.S., Wang, Y. and Van Cappellen, P., 1998. Kinetic modelling of microbially- driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry. J. Contam. Hydrol., 209, 5380.CrossRefGoogle Scholar
Ifabiyi, I.P., 2008. Self purification of a freshwater stream in Ile-Ife : lessons for water management. J. Hum. Ecol., 24, 131137.CrossRefGoogle Scholar
ISO, 2006. International Standard. Water quality – Evaluation of genotoxicity by measurement of the induction of micronuclei – Part 1: Evaluation of genotoxicity using amphibian larvae. ISO 21427-1, ICS: 13.060.70, GENOVA – CH, Août 2006, 15.
Janauer, G.A., 2000. Ecohydrology : fusing concepts and scales. Ecol. Eng., 16, 916.CrossRefGoogle Scholar
Jekel, M. and Gruenheid, S., 2005. Bank filtration and groundwater recharge for treatment of polluted surface waters. Water Sci. Technol.: Water Supply, 5, 5766.Google Scholar
Landmeyer, J.E., Bradley, P.M., Trego, D.A., Hale, K.G. and Haas, J.E., 2010. MTBE, TBA, and TAME attenuation in diverse hyporheic zones. Ground Water, 48, 3041.CrossRefGoogle ScholarPubMed
Lefebvre, S., Marmonier, P. and Peiry, J.L., 2006. Nitrogen dynamics in rural streams: differences between geomorphologic units. Ann. Limnol. - Int. J. Lim., 42, 4352.CrossRefGoogle Scholar
Lewandowski, J., Putschew, A., Schweisg, D., Neumann, C. and Radke, M., 2011. Fate of organic micropollutants in the hyporheic zone of a eutrophic lowland stream: results of a preliminary field study. Sci. Total Environ., 409, 18241835.CrossRefGoogle ScholarPubMed
Marmonier, P., Archambaud, G., Belaidi, N., Bougon, N., Breil, P., Chauvet, E., Claret, C., Cornut, J., Datry, T., Dole-Olivier, M.-J., Dumont, B., Flipo, N., Foulquier, A., Gérino, M., Guilpart, A., Julien, F., Maazouzi, C., Martin, D., Mermillod-Blondin, F., Montuelle, B., Namour, Ph., Navel, S., Ombredane, D., Pelte, T., Piscart, C., Pusch, M., Stroffek, S., Robertson, A., Sánchez-Pérez, J.M., Sauvage, S., Taleb, A., Wantzen, M. and Vervier, Ph., 2012. The role of organisms in hyporheic processes: gaps in current knowledge, needs for future research and applications. Ann. Limnol. - Int. J. Lim., 48, 253266.CrossRefGoogle Scholar
McGill, R., Tuckey, J. and Larsen, W., 1978. Variations of box plots. Am. Statist., 32, 1216.Google Scholar
Mermillod-Blondin, F., Gaudet, J.P., Gerino, M. and Creuze des, Châtelliers M., 2003. Influence of macroinvertebrates on physico-chemical and microbial processes in the hyporheic sediments. Hydrol. Process., 17, 779794.CrossRefGoogle Scholar
Mouchet, F. and Gauthier, L., 2013. Genotoxicity of contaminants: amphibian micronucleus assay. In: Férard, J.F. and Blaise, C. (eds.), Comprehensive Handbook (or Practical Guide) of Ecotoxicological Terms, Springer Publishers, Dordrecht, The Netherlands. in press.Google Scholar
Navel, S., Sauvage, S., Delmotte, S., Gerino, M., Marmonier, P. and Mermillod-Blondin, F., 2012. A modelling approach to quantify the influence of fine sediment deposition on biogeochemical processes occurring in the hyporheic zone. Ann. Limnol. - Int. J. Lim., 48, 279287.CrossRefGoogle Scholar
Nieuwkoop, D. and Faber, J., 1956. Normal Table of Xenopus laevis (Daudin): A Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorphosis, North-Holland Publishing Company (Amsterdam), 243.Google Scholar
Orghidan, T., 1959. Ein neuer Lebensraum des unterirdischen Wassers: Der hyporheische Biotop. Arch. Hydrobiol., 55, 392414.Google Scholar
Peyrard, D., Sauvage, S., Vervier, P., Sánchez-Pérez, J.M. and Quintard, M., 2008. A coupled vertically integrated model to describe lateral exchanges between surface and subsurface in large alluvial floodplains with a fully penetrating river. Hydrol. Process., 22, 42574427.CrossRefGoogle Scholar
Peyrard, D., Delmotte, S., Sauvage, S., Namour, Ph., Gerino, M., Vervier, P. and Sánchez-Pérez, J.M., 2011. Longitudinal transformation of nitrogen and carbon transport and in the hyporheic zone of an N-reach stream: a combined modeling and field study. Phys. Chem. Earth, 36, 599611.CrossRefGoogle Scholar
Pusch, M. and Schwoerbel, J., 1994. Community respiration in hyporheic sediments of a mountain stream (Steina, Black Forest). Arch. Hydrobiol., 130, 3552.Google Scholar
Pusch, M., Fiebig, D., Brettar, I., Eisenmann, H., Ellis, B.K., Kaplan, L.A., Lock, M.A., Naegeli, M.W. and Traunspurger, W., 1998. The role of micro-organisms in the ecological connectivity of running waters. Freshw. Biol., 40, 453495.CrossRefGoogle Scholar
Sánchez, Pérez J.M., Vervier, P., Garabetian, F., Sauvage, S., Loubet, M., Rols, J.L., Bariac, T. and Weng, P., 2003. Nitrogen dynamics in the shallow groundwater of a riparian wetland zone of the Garonne, south-western France. Nitrate inputs, bacterial densities, organic matter supply and denitrification measurements. Hydrol. Earth Syst. Sci., 7, 97107.CrossRefGoogle Scholar
Schindler, J.E. and Krabbenhoft, D.P., 1998. The hyporheic zone as a source of dissolved organic carbon and carbon gazes to a temperate forest stream. Biogeochemistry, 43, 157174.CrossRefGoogle Scholar
Schmidt, C.K., Lange, F.T. and Brauch, H.J., 2004. Assessing the impact of different redox conditions and residence times on the fate of organic micropollutants during riverbank filtration. In: 4th International Conference on Pharmaceuticals and Endocrine Disrupting Chemicals in Water, 13–15 October 2004, Minneapolis, Minnesota.Google Scholar
Schuytema, G.S. and Nebeker, A.V., 1998. Comparative toxicity of diuron on survival and growth of Pacific treefrog, bullfrog, red-legged frog, and African clawed frog embryos and tadpoles. Arch. Environ. Contam. Toxicol., 34, 370376.CrossRefGoogle ScholarPubMed
Stanford, J.A. and Ward, J.V., 1993. An ecosystem perspective of alluvial rivers: connectivity and the hyporheic. J. N. Am. Benthol. Soc., 12, 4860.CrossRefGoogle Scholar
Storey, R.G., Fulthorpe, R.R. and Williams, D.D., 1999. Perspectives and predictions on the microbial ecology of the hyporheic zone. Freshw. Biol., 41, 119130.CrossRefGoogle Scholar
Sumpono, Perotti, P., Belan, A., Forestier, C., Lavedrine, B. and Bohatier, J., 2003. Effect of diuron on aquatic bacteria in laboratory-scale wastewater treatment ponds with special reference to Aeromonas species studied by colony hybridization. Chemosphere, 50, 445455.CrossRefGoogle Scholar
Weng, P., Sánchez Pérez, J.M., Sauvage, S., Vervier, P. and Giraud, F., 2003. Assessment of the quantitative and qualitative buffer function of an alluvial wetland: hydrological modelling of a large floodplain (Garonne River, France). Hydrol. Process., 17, 23752392.CrossRefGoogle Scholar
White, D.S., 1993. Perspectives on defining and delineating hyporheic zones. J. N. Am. Benthol. Soc., 12, 6169.CrossRefGoogle Scholar
Williams, J.B., Mills, G. and Barnhurst, D., 2007. Transport and degradation of a trichloroethylene plume within a stream hyporheic zone. In: Proceedings of the 2007 National Conference on Environmental Science and Technology, 189194.Google Scholar
Wyss, A., Boucher, J., Montero, A. and Marison, I., 2006. Micro-encapsulated organic phase for enhanced bioremediation of hydrophobic organic pollutants. Enzyme Microbiol. Technol., 40, 2531.CrossRefGoogle Scholar