Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T09:01:36.418Z Has data issue: false hasContentIssue false

Vertical distribution of zooplankton in a shallow peatland pond: the limiting role of dissolved oxygen

Published online by Cambridge University Press:  27 November 2013

Csaba F. Vad*
Affiliation:
Doctoral School of Environmental Sciences, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
Zsófia Horváth
Affiliation:
Department of Systematic Zoology and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary Present address: WasserCluster Lunz, Dr. Carl Kupelwieser Promenade 5, AT-3293, Lunz am See, Austria.
Keve T. Kiss
Affiliation:
Danube Research Institute, MTA Centre for Ecological Research, Jávorka Sándor u. 14, H-2131 Göd, Hungary
Bence Tóth
Affiliation:
Danube Research Institute, MTA Centre for Ecological Research, Jávorka Sándor u. 14, H-2131 Göd, Hungary
Attila L. Péntek
Affiliation:
Doctoral School of Biological Sciences, Szent István University, Páter Károly u. 1, H-2103, Gödöllő, Hungary
Éva Ács
Affiliation:
Danube Research Institute, MTA Centre for Ecological Research, Jávorka Sándor u. 14, H-2131 Göd, Hungary
*
*Corresponding author: vad.csaba@gmail.com
Get access

Abstract

We investigated the diel vertical distribution patterns of microcrustacean zooplankton (Cladocera, Copepoda) in a shallow pond (max. depth: 70 cm) of the Öreg-turján peatland (Ócsa, Central Hungary) during three 24-h periods in July (19–20th), August (17–18th) and September (11–12th) 2011. Environmental variables showed remarkable vertical stratification. Oxygen concentration was close to zero in the entire water column from night until sunrise, while the lower strata (from 20 cm below the surface) were close to anoxic during all three diel cycles. It proved to be the main determinant of the vertical distribution of microcrustaceans. Accordingly, the highest proportion of individuals was present in the surface layer. Chlorophyll-a concentration and phytoplankton biomass were inversely distributed compared to zooplankton. Microcrustaceans (mainly Daphnia curvirostris) migrated to the middle layer only in August, which could be explained by a trade-off between food resources, dissolved oxygen (DO) and competition with littoral zooplankters. The diurnal density patterns of microcrustaceans suggested horizontal migration into the aquatic macrophytes during night, which could be a strategy to avoid Chaoborus predation. Our results show that strong vertical gradients of abiotic and biotic factors occur even in such shallow waterbodies. Among them, DO can maintain constant vertical aggregation of zooplankters by limiting their occurrence to the surface layers.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlgren, G., Lundstedt, L., Brett, M. and Forsberg, C., 1990. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J. Plankton Res., 12, 809818.CrossRefGoogle Scholar
Andersen, T., 1997. Pelagic Nutrient Cycles: Herbivores as Sources and Sinks, Springer-Verlag, Berlin, 280 p.CrossRefGoogle Scholar
Arvola, L., Salonen, K., Kankaala, P. and Lehtovaara, A., 1992. Vertical distributions of bacteria and algae in a steeply stratified humic lake under high grazing pressure from Daphnia longispina. Hydrobiologia, 229, 253269.CrossRefGoogle Scholar
Barker, T., Irfanullah, H.MD. and Moss, B., 2010. Micro-scale structure in the chemistry and biology of a shallow lake. Freshw. Biol., 55, 11451163.CrossRefGoogle Scholar
Blinn, D.W. and Green, J., 1986. A pump sampler study of microdistribution in Walker Lake, Arizona, U.S.A.: a senescent crater lake. Freshw. Biol., 16, 175185.CrossRefGoogle Scholar
Boix, D., Biggs, J., Céréghino, R., Hull, A.P., Kalettka, T. and Oertli, B., 2012. Pond research and management in Europe: “Small is Beautiful”. Hydrobiologia, 689, 19.CrossRefGoogle Scholar
Branco, B.F. and Torgersen, T., 2009. Predicting the onset of thermal stratification in shallow inland waterbodies. Aquat. Sci., 71, 6579.CrossRefGoogle Scholar
Brönmark, C. and Hansson, L.-A., 1998. The Biology of Lakes and Ponds, Oxford University Press, New York, 216 p.Google Scholar
Burks, R.L., Lodge, D.M., Jeppesen, E. and Lauridsen, T.L., 2002. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral. Freshw. Biol., 47, 343365.CrossRefGoogle Scholar
Ford, P.W., Boon, P.I. and Lee, K., 2002. Methane and oxygen dynamics in a shallow floodplain lake: the significance of periodic stratification. Hydrobiologia, 485, 97110.CrossRefGoogle Scholar
Fox, H.M., 1948. The haemoglobin of Daphnia. Proc. R. Soc. Lond. Ser. B, Biol. Sci., 135, 195212.CrossRefGoogle Scholar
Gilbert, J.J. and Hampton, S.E., 2001. Diel vertical migrations of zooplankton in a shallow, fishless pond: a possible avoidance-response cascade induced by notonectids. Freshw. Biol., 46, 611621.CrossRefGoogle Scholar
Gliwicz, Z.M., 1986. Predation and the evolution of vertical migration behavior in zooplankton. Nature, 320, 746748.CrossRefGoogle Scholar
Gulati, R.D. and DeMott, W.R., 1997. The role of food quality for zooplankton: remarks on the state-of-art, perspectives and priorities. Freshw. Biol., 38, 753768.CrossRefGoogle Scholar
Gulyás, P. and Forró, L., 1999. Az ágascsápú rákok (Cladocera) kishatározója [A guide for the identification of Cladocera occurring in Hungary – in Hungarian with English abstract], Vízi természet-és környezetvédelem 9, Környezetgazdálkodási Intézet, Budapest, 237 p.Google Scholar
Heisey, D. and Porter, K.G., 1977. The effect of ambient oxygen concentration on filtering and respiration rates of Daphnia galeata mendotae and Daphnia magna. Limnol. Oceanogr., 22, 839845.CrossRefGoogle Scholar
Hembre, L.K. and Megard, R.O., 2003. Seasonal and diel patchiness of a Daphnia population: An acoustic analysis. Limnol. Oceanogr., 48, 22212233.CrossRefGoogle Scholar
Herbert, M.R., 1954. The tolerance of oxygen deficiency in the water by certain Cladocera. Mem. Ist. Ital. Idrobiol., 8, 97107.Google Scholar
Keresztessy, K., May, K., Weiperth, A., Vad, Cs.F. and Farkas, J., 2012. Hosszú távú halfaunisztikai vizsgálatok és a veszélyeztetett lápi póc populációbiológiája a Duna–Tisza köze két Ramsari területén [Long-term fish faunistic research and the population biology of the threatened European mudminnow in two Ramsar wetlands of the Danube–Tisza Interfluve. – In Hungarian with English summary]. Pisces Hungarici, 6, 4754.Google Scholar
Kessler, K. and Lampert, W., 2004. Depth distribution of Daphnia in response to a deep-water algal maximum: the effect of body size and temperature gradient. Freshw. Biol., 49, 392401.CrossRefGoogle Scholar
Komárek, J. and Anagnostidis, K., 1998. Cyanoprokaryota 1. Teil: Chroococcales. In: Ettl, H., Gärtner, G., Heynig, H. and Mollenhauer, D. (eds.), Süsswasserflora von Mitteleuropa 19/1, Gustav Fischer Verlag, Stuttart, 548 p.Google Scholar
Komárek, J. and Anagnostidis, K., 2005. Cyanoprokaryota 2. Teil: Oscillatoriales. In: Büdel, B., Krienitz, L., Gärtner, G. and Schagerl, M. (eds.), Süsswasserflora von Mitteleuropa 19/2, Elsevier/Spektrum, Heidelberg, 759 p.Google Scholar
Kring, R.L. and O'Brien, W.J., 1976. Effect of varying oxygen concentrations on the filtering rate of Daphnia pulex. Ecology, 57, 808814.CrossRefGoogle Scholar
Kuczyńska-Kippen, N., 2001. Diurnal vertical distribution of rotifers (Rotifera) in the Chara zone of Budzyńskie Lake, Poland. Hydrobiologia, 446/447, 195201.CrossRefGoogle Scholar
Lampert, W., McCauley, E. and Manly, B.F.J., 2003. Trade-offs in the vertical distribution of zooplankton: ideal free distribution with costs? Proc. R. Soc. Lond. Ser. B, Biol. Sci., 270, 765773.CrossRefGoogle ScholarPubMed
Larsson, P. and Lampert, W., 2012. Finding the optimal vertical distribution: behavioural responses of Daphnia pulicaria to gradients of environmental factors and the presence of fish. Freshwat. Biol., 57, 25142525.CrossRefGoogle Scholar
Lauridsen, T.L. and Buenk, I., 1996. Diel changes in the horizontal distribution of zooplankton in the littoral zone of two shallow eutrophic lakes. Arch. Hydrobiol., 137, 167176.Google Scholar
Lauridsen, T.L., Jeppesen, E., Søndergaard, M. and Lodge, D., 1998. Horizontal migration of zooplankton: predator-mediated use of macrophyte habitat. In: Jeppesen, E., Søndergaard, Ma., Søndergaard, Mo. and Christoffersen, K. (eds.), The Structuring Role of Submerged Macrophytes in Lakes, Springer-Verlag, New York, 233239.CrossRefGoogle Scholar
Lynch, M., 1978. Complex interactions between natural coexploiters – Daphnia and Ceriodaphnia. Ecology, 59, 552564.CrossRefGoogle Scholar
Massana, R., Gasol, J.M., Jürgens, K. and Pedrós-Alió, C., 1994. Impact of Daphnia pulex on a metalimnetic microbial community. J. Plankton Res., 16, 13791399.CrossRefGoogle Scholar
Meerhoff, M., Iglesias, C., Teixeira de Mello, F., Clemente, J.M., Jensen, E., Lauridsen, T.L., Jeppesen, E., 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshw. Biol., 52, 10091021.CrossRefGoogle Scholar
Moss, B., 1988. Ecology of Fresh Waters: Man and Medium, Blackwell Scientific Publications, London, 417 p.Google Scholar
Müller-Navarra, D.C., Brett, M.T., Liston, A.M. and Goldman, C.R., 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature, 403, 7477.CrossRefGoogle ScholarPubMed
Nurminen, L.K.L. and Horppila, J.A., 2002. A diurnal study on the distribution of filter feeding zooplankton: Effect of emergent macrophytes, pH and lake trophy. Aquat. Sci., 64, 198206.CrossRefGoogle Scholar
Oertli, B., Céréghino, R., Hull, A. and Miracle, R., 2009. Pond conservation: from science to practice. Hydrobiologia, 634, 19.CrossRefGoogle Scholar
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Sólymos, P., Stevens, M.H.H., Wagner, H., 2012. Vegan: Community ecology package, R package version 2.0–4, Available online at: http://CRAN.R-project.org/package=vegan.
Orcutt, J.D. Jr. and Porter, K.G., 1983. Diel vertical migration by zooplankton: constant and fluctuating temperature effects on life history parameters of Daphnia. Limnol. Oceanogr., 28, 720730.CrossRefGoogle Scholar
Paul, R.J., Colmorgen, M., Pirow, R., Chen, Y-H. and Tsai, M-C., 1998. Systemic and metabolic responses in Daphnia magna to anoxia. Comp. Biochem. Physiol. A, Mol. Integr. Physiol., 120, 119125.CrossRefGoogle Scholar
Pilati, A. and Wurtsbaugh, W.A., 2003. Importance of zooplankton for the persistence of a deep chlorophyll layer: a limnocorral experiment. Limnol. Oceanogr., 48, 249260.CrossRefGoogle Scholar
Ranta, E. and Nuutinen, V., 1985. Daphnia exhibit diurnal vertical migration in shallow rock-pools. Hydrobiologia, 127, 253256.CrossRefGoogle Scholar
Rautio, M. and Tartarotti, B., 2010. UV radiation and freshwater zooplankton: damage, protection and recovery. Freshw. Rev., 3, 105131.CrossRefGoogle ScholarPubMed
Rautio, M., Korhola, A. and Zellmer, I.D., 2003. Vertical distribution of Daphnia longispina in a shallow subarctic pond: does the interaction of ultraviolet radiation and Chaoborus predation explain the pattern? Polar Biol., 26, 659665.CrossRefGoogle Scholar
R Development Core Team, 2009. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0; Available online at: http://www.r-project.org.
Rhode, S.C., Pawlowski, M. and Tollrian, R., 2001. The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia. Nature, 412, 6972.CrossRefGoogle ScholarPubMed
Rocha, O. and Duncan, A., 1985. The relationship between cell carbon and cell volume in freshwater algal species used in zooplanktonic studies. J. Plankton Res., 7, 279294.CrossRefGoogle Scholar
Romanovsky, Y.E. and Feniova, I.Y., 1985. Competition among Cladocera: effect of different levels of food supply. Oikos, 44, 243252.CrossRefGoogle Scholar
Rydin, H. and Jeglum, J.K., 2006. The Biology of Peatlands, Oxford University Press, New York, 343 p.CrossRefGoogle Scholar
Salonen, K. and Lehtovaara, A., 1992. Migrations of haemoglobin-rich Daphnia longispina in a small, steeply stratified, humic lake with an anoxic hypolimnion. Hydrobiologia, 229, 271288.CrossRefGoogle Scholar
Sell, A.F., 1998. Adaptation to oxygen deficiency: Contrasting patterns of haemoglobin synthesis in two coexisting Daphnia species. Comp. Biochem. Physiol. A, Mol. Integr. Physiol., 120, 119125.CrossRefGoogle Scholar
Tikkanen, T. and Willén, T., 1992. Växtplanktonflora, Naturvårdsverket, Solna, 280 p.Google Scholar
Tinson, S. and Laybourn-Parry, J., 1985. The behavioural responses and tolerance of freshwater benthic cyclopoid copepods to hypoxia and anoxia. Hydrobiologia, 127, 257263.CrossRefGoogle Scholar
Utermöhl, H., 1958. Zur Vervollkommung der qualitativen Phytoplankton-Methodik. Mitt. Int. Ver. Theor. Angew. Limnol., 9, 138.Google Scholar
Vad, Cs.F., Horváth, Zs., Kiss, K.T., Ács, É., Török, J.K. and Forró, L., 2012. Seasonal dynamics and composition of cladoceran and copepod assemblages in ponds of a Hungarian cutaway peatland. Int. Rev. Hydrobiol., 97, 420434.CrossRefGoogle Scholar
Vadstein, O., Jensen, A., Olsen, Y. and Reinertsen, H., 1988. Growth and phosphorus status of limnetic phytoplankton and bacteria. Limnol. Oceanogr., 33, 489503.CrossRefGoogle Scholar
V.-Balogh, K., Németh, B. and Vörös, L., 2009. Specific attenuation coefficients of optically active substances and their contribution to the underwater ultraviolet and visible light climate in shallow lakes and ponds. Hydrobiologia, 632, 91105.CrossRefGoogle Scholar
von Elert, E., Martin-Creuzburg, D. and Le Coz, J.R., 2003. Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata). Proc. R. Soc. Lond. Ser. B, Biol. Sci., 270, 12091214.CrossRefGoogle Scholar
Wanzenböck, J., 1995. Current knowledge on the European mudminnow, Umbra krameri Walbaum, 1792 (Pisces: Umbridae). Ann. Naturhist. Mus. Wien B, Bot. Zool., 97, 439449.Google Scholar
Weider, L.J. and Lampert, W., 1985. Differential response of Daphnia genotypes to oxygen stress: respiration rates, hemoglobin content and low-oxygen tolerance. Oecologia, 65, 487491.CrossRefGoogle ScholarPubMed
Wetzel, R.G. and Likens, G.E., 1991. Limnological Analyses, Springer-Verlag, New York, 391 p.CrossRefGoogle Scholar
Williamson, C.E., Sanders, R.W., Moeller, R.E. and Stutzman, P.L., 1996. Utilization of subsurface food resources for zooplankton reproduction: Implications for diel vertical migration theory. Limnol. Oceanogr., 41, 224233.CrossRefGoogle Scholar
Williamson, C.E., Fischer, J.M., Bollens, S.M., Overholt, E.P. and Breckenridge, J.K., 2011. Towards a more comprehensive theory of zooplankton diel vertical migration: integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnol. Oceanogr., 56, 16031623.CrossRefGoogle Scholar
Winder, M., Spaak, P. and Mooij, W.M., 2004. Trade-offs in Daphnia habitat selection. Ecology, 85, 20272036.CrossRefGoogle Scholar
Zaret, T.M. and Suffern, J.S., 1976. Vertical migration in zooplankton as a predator avoidance mechanism. Limnol. Oceanogr., 21, 804813.CrossRefGoogle Scholar
Supplementary material: PDF

OLM- limn130029

tables_online only

Download OLM- limn130029(PDF)
PDF 51 KB