Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-20T08:57:43.957Z Has data issue: false hasContentIssue false

Cartographic Remote-Sensing Monitoring of Glaciological Systems (Example, Mount El‛ Brus, U.S.S.R.) (Abstract)

Published online by Cambridge University Press:  20 January 2017

Yu. F. Knizhnikov
Affiliation:
U.S.S.R.
V.I. Kravtsova
Affiliation:
U.S.S.R.
I.A. Labutina
Affiliation:
U.S.S.R.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Remote-sensing methods in monitoring the glacierization of Mount EI‛ brus are used to produce base and dynamic maps, and to obtain quantitative information (dynamic indices) about the rate, intensity, and variations of the process. The monitoring system is divided, according to scope and territory covered, into small-scale for total glacierization and the periglacial zone, medium-scale for separate glaciers, and large-scale (detailed) for part of the glaciers or sectors of the adjoining slopes. The approximate relationship of even scales is 1 : 4.

Small-scale monitoring remote-sensing systems are important for making maps showing the complex characteristics of the glaciological system. A series of maps was produced including geographical, those of high-altitude zones, slope and exposure angles, geological, glaciomorphological, climatic (temperature, precipitation, and winds), distribution of direct solar radiation, hydrological (source of streams), seats of avalanches, and landslides. All these data serve as a cartographical basis in monitoring the glacierization of Mount EI‛ brus. They are compiled from remotely sensed and Earth-based data.

Current monitoring on a small scale includes observations of the conditions which determine the existence of the glacial system - this includes data on winter snowfall and the period of snow cover. These observations were obtained from meteorological and resource satellites, and from scanner data of medium and high resolution. Also important are observations of changes in the outline of glaciers, times of snowfall and character of the distribution of snow, and its redistribution due to avalanches and snowstorms. High-resolution space photographs, small-scale aerial photographs, and aerovisual observations provide the data for these observations. It has been determined that the area of the glaciers of Mount El‛ brus has been reduced by 1 % in the last 25 years, i.e. the rate of its deglacierization dropped sharply as compared to preceding decades.

The role of quantitative information gains importance in the medium-scale level of monitoring. Topographical maps of separate glaciers compiled from aerial photographs or data from ground stereo-photogrammetric surveys constitute the base maps at this level. The main method used in monitoring were large-scale surveys from aircraft, perspective surveys from helicopters, and phototheodolite surveys. Multi-date surveys of the glaciers provide data about the changes in their outlines and height, the character of their relief, their moraines, the amount of snow accumulation and ablation in separate years, the surface rates of ice flow and their fluctuations. The techniques by which quantitative information is obtained about changes in the glaciers are derived from processing the data of multi-date surveys. The organization and techniques of phototheodolite surveys have been improved. A theory evolved for determining the surface-ice movement by stereo-photogrammetric means and the technique for it has also improved; algorithms and programs for machine processing of the data of multi-date surveys (ground and from aircraft) have been produced

At this level of monitoring, it has been found that the retreat rate of most glaciers has slowed down and several glaciers are now in equilibrium. Several glaciers became active at the beginning of the 1970s and 1980s; this was accompanied by an increase in their height and forward movement. For example, activation of Kyukyurtlyu Glacier has been recorded (higher surface and increasing flow rate) which has caused the glacier to move forward 100 m. Surveys at an interval of 2 years recorded the beginning of the process of retreat of this glacier.

Detailed monitoring is used to detect the mechanism of the dynamic processes and to study it on local representative sectors. On a glacier it may take the form of annual surveys of its tongue, which makes it possible to observe the processes of formation of moraines and glacio-fluvial relief. Studies may also be made of the mechanism of the movement of avalanches and landslides, deducing their quantitative characteristics and appraising the results of avalanches and landslides. Multi-date surveys of sectors of the slopes provide information about processes in the periglacial zone. At this level, regularly repeated ground stereo-photogrammetric surveys are the main means of observation.

Glaciological remote-sensing monitoring provides a wealth of data for theoretical development in the field of glaciology. It makes it possible to forecast and produce warnings about hazardous processes and phenomena.

Type
Abstract
Copyright
Copyright © International Glaciological Society 1987