No CrossRef data available.
Published online by Cambridge University Press: 20 January 2017
In a study of the Rutford Ice Stream, strain rates were measured on a transverse section. Magnitudes ranged up to 40 × 10−3 a−1 but were typically in the order of 3 × 10−3 a−1 with an error of 0.1 χ 10−3 a−1. Variations in the strain rate between adjacent stakes of 0.2 χ 10−3 a−1 to 2 × 10−3 a−1 were matched to the thickness variations on the glacier.
For each set of three adjacent stakes, the velocity gradient components of the surface strain rate tensor were calculated by assuming that the gradients were linear over the distance between adjacent stakes. When plotted against distance across the ice stream, each strain rate component revealed different aspects of the flow field. The longitudinal strain rate was compressive, with an almost constant magnitude of 10−3 a−1. The lateral strain rate is extensive, with an average value of 1.1 × 10−3 a−1 which agreed with the angle between the divergent flow lines observed on a Landsat image. Peaks in the lateral strain rate, corresponding to longitudinal bands of thicker ice, showed that these thicker bands were spreading more rapidly at the expense of thinner areas. The two velocity gradient components of the shear rate tensor also reflected differences in ice thickness.