Hostname: page-component-6bb9c88b65-s7dlb Total loading time: 0 Render date: 2025-07-26T03:45:34.888Z Has data issue: false hasContentIssue false

A question of alignment – AI, GenAI and applied linguistics

Published online by Cambridge University Press:  24 July 2025

Niall Curry
Affiliation:
Department of Languages, Information and Communications, Manchester Metropolitan University, Manchester, UK
Tony McEnery*
Affiliation:
Department of Linguistics and English Language, Lancaster University, Lancaster, England, UK School of Foreign Studies, Xi’an Jiaotong University, Xi’an, Shaanxi, China
Gavin Brookes
Affiliation:
Department of Linguistics and English Language, Lancaster University, Lancaster, England, UK
*
Corresponding author: Tony McEnery; Email: a.mcenery@lancaster.ac.uk

Abstract

Recent developments in artificial intelligence (AI) in general, and Generative AI (GenAI) in particular, have brought about changes across the academy. In applied linguistics, a growing body of work is emerging dedicated to testing and evaluating the use of AI in a range of subfields, spanning language education, sociolinguistics, translation studies, corpus linguistics, and discourse studies, inter alia. This paper explores the impact of AI on applied linguistics, reflecting on the alignment of contemporary AI research with the epistemological, ontological, and ethical traditions of applied linguistics. Through this critical appraisal, we identify areas of misalignment regarding perspectives on knowing, being, and evaluating research practices. The question of alignment guides our discussion as we address the potential affordances of AI and GenAI for applied linguistics as well as some of the challenges that we face when employing AI and GenAI as part of applied linguistics research processes. The goal of this paper is to attempt to align perspectives in these disparate fields and forge a fruitful way ahead for further critical interrogation and integration of AI and GenAI into applied linguistics.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

AbuSahyon, A. S. A. E., Alzyoud, A., Alshorman, O., & Al-Absi, B. (2023). AI-driven technology and chatbots as tools for enhancing English language learning in the context of second language acquisition: A review study. International Journal of Membrane Science and Technology, 10(1), 12091223. https://doi.org/10.15379/ijmst.v10i1.2829CrossRefGoogle Scholar
Alharbi, W. (2023). AI in the foreign language classroom: A pedagogical overview of automated writing assistance tools. Education Research International, 2023(1), 4253331. https://doi.org/10.1155/2023/4253331CrossRefGoogle Scholar
Al-Obaydi, L. H., Pikhart, M., & Klimova, B. (2023). ChatGPT and the general concepts of education: Can artificial intelligence-driven chatbots support the process of language learning? International Journal of Emerging Technologies in Learning (IJET), 18(21), 3950. https://doi.org/10.3991/ijet.v18i21.42593CrossRefGoogle Scholar
Amonova, S., Juraeva, G., & Khidoyatov, M. (2023). Harnessing the potential of artificial intelligence in language learning: Is AI threat or opportunity? In Proceedings of the 7th International Conference on Future Networks and Distributed Systems (pp. 292297). https://doi.org/10.1145/3644713.3644751CrossRefGoogle Scholar
Anderson, C. (2017). Ethics in qualitative language education research. In Mirhosseini, S. A. (Ed.), Reflections on qualitative research in language and literacy education (pp. 5973). Springer. https://doi.org/10.1007/978-3-319-49140-0_5CrossRefGoogle Scholar
Angelov, P., Soares, E., Jiang, R., Arnold, N., & Atkinson, P. (2021). Explainable artificial intelligence: An analytical review. WIREs: Data Mining and Knowledge Discovery, 11(5), e1424. https://doi.org/10.1002/widm.1424Google Scholar
Ashby, W. R. (1956). An introduction to cybernetics. John Wiley & Sons.10.5962/bhl.title.5851CrossRefGoogle Scholar
BAAL. (2021). Recommendations on good practice in applied linguistics (4th ed.). The British Association of Applied Linguistics. Retrieved April 4 , 2025, from https://www.baal.org.ukGoogle Scholar
Badwan, K. (2021). Unmooring language for social justice: Young people talking about language in place in Manchester, UK. Critical Inquiry in Language Studies, 18(2), 153173. https://doi.org/10.1080/15427587.2020.1796485CrossRefGoogle Scholar
Baker, P., & Potts, A. (2013). Why do white people have thin lips? Google and the perpetuation of stereotypes via auto-complete search forms. Critical Discourse Studies, 10(2), 187204. https://doi.org/10.1080/17405904.2012.744320CrossRefGoogle Scholar
Baker, S., & Kanade, T. (2000). Hallucinating faces. In Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (pp. 8388). IEEE. https://doi.org/10.1109/AFGR.2000.840616CrossRefGoogle Scholar
Bashir, N., Donti, P., Cuff, J., Sroka, S. I., Sze, M., Delimitrou, V., & Olivetti, E. (2024). The climate and sustainability implications of generative AI. An MIT Exploration of Generative AI. https://doi.org/10.21428/e4baedd9.9070dfe7Google Scholar
Baskara, F. R. (2023). Integrating ChatGPT into EFL writing instruction: Benefits and challenges. International Journal of Education and Learning, 5(1), 4455. https://doi.org/10.31763/ijele.v5i1.858CrossRefGoogle Scholar
Belda-Medina, J., & Calvo-Ferrer, J. R. (2022). Using chatbots as AI conversational partners in language learning. Applied Sciences, 12(17), 8427. https://doi.org/10.3390/app12178427CrossRefGoogle Scholar
Betal, A. (2023). Enhancing second language acquisition through artificial intelligence (AI): Current insights and future directions. Journal for Research Scholars and Professionals of English Language Teaching, 7, 39. https://doi.org/10.54850/jrspelt.7.39.003Google Scholar
Borgmann, A. (1984). Technology and the character of contemporary life: A philosophical inquiry. University of Chicago Press.Google Scholar
Borgmann, A. (2006). Real American ethics: Taking responsibility for our country. University of Chicago Press.10.7208/chicago/9780226066356.001.0001CrossRefGoogle Scholar
Brandt, A., & Hazel, S. (2024). Towards interculturally adaptive conversational AI. Applied Linguistics Review, 16(2). https://doi.org/10.1515/applirev-2024-0187Google Scholar
Brookes, G., & McEnery, T. (2024). Corpus linguistics and ethics. In De Costa, P. I., Rabie-Ahmed, A., & Cinaglia, C. (Eds.), Ethical issues in applied linguistics scholarship (pp. 2844). John Benjamins Publishing Company. https://doi.org/10.1075/rmal.7.02broCrossRefGoogle Scholar
Casal, J. E., & Kessler, M. (2023). Can linguists distinguish between ChatGPT/AI and human writing? A study of research ethics and academic publishing. Research Methods in Applied Linguistics, 2(3), 100068. https://doi.org/10.1016/j.rmal.2023.100068CrossRefGoogle Scholar
Casal-Otero, L., Catala, A., Fernández-Morante, C., Taboada, M., Cebreiro, B., & Barro, S. (2023). AI literacy in K-12: A systematic literature review. International Journal of STEM Education, 10(1), 29. https://doi.org/10.1186/s40594-023-00418-7CrossRefGoogle Scholar
Chen, S. Y. (2023). Generative AI, learning and new literacies. Journal of Educational Technology Development & Exchange (JETDE), 16(2), 119. https://doi.org/10.18785/jetde.1602.01CrossRefGoogle Scholar
Choi, L. J. (2022). Interrogating structural bias in language technology: Focusing on the case of voice chatbots in South Korea. Sustainability, 14(20), 13117. https://doi.org/10.3390/su142013177CrossRefGoogle Scholar
Christian, B. (2021). The alignment problem: How can artificial intelligence learn human values? Atlantic Books.Google Scholar
Cohen, S., Mompelat, L., Mann, A., & Connors, L. (2024). The linguistic leap: Understanding, evaluating, and integrating AI in language education. Journal of Language Teaching, 4(2), 2331. https://doi.org/10.54475/jlt.2024.012CrossRefGoogle Scholar
Consoli, S., & Ganassin, S. (2023). Navigating the waters of reflexivity in applied linguistics. In Consoli, S. & Ganassin, S. (Eds.), Reflexivity in applied linguistics (pp. 116). Routledge. https://doi.org/10.4324/9781003149408Google Scholar
Cope, B., & Kalantzis, M. (2024). A multimodal grammar of artificial intelligence: Measuring the gains and losses in generative AI. Multimodality & Society, 4(2), 123152. https://doi.org/10.1177/26349795231221699CrossRefGoogle Scholar
Creely, E. (2024). Exploring the role of generative AI in enhancing language learning: Opportunities and challenges. International Journal of Changes in Education, 1(3), 158167. https://doi.org/10.47852/bonviewIJCE42022495CrossRefGoogle Scholar
Crevier, D. (1993). AI: The tumultuous search for artificial intelligence. Basic Books.Google Scholar
Crosthwaite, P., & Baisa, V. (2023). Generative AI and the end of corpus-assisted data-driven learning? Not so fast! Applied Corpus Linguistics, 3(3), 100066. https://doi.org/10.1016/j.acorp.2023.100066CrossRefGoogle Scholar
Curry, N. (2024). Questioning the climate crisis: A contrastive analysis of parascientific discourses. Nordic Journal of English Studies, 23(2), 235267. https://doi.org/10.35360/njes.v23i2.39190CrossRefGoogle Scholar
Curry, N., Baker, P., & Brookes, G. (2024). Generative AI for corpus approaches to discourse studies: A critical evaluation of ChatGPT. Applied Corpus Linguistics, 4(1), 19. https://doi.org/10.1016/j.acorp.2023.100082CrossRefGoogle Scholar
Curry, N., & Pérez-Paredes, P. (2021). Stance nouns in COVID-19 related blog posts: A contrastive analysis of blog posts published in The Conversation in Spain and the UK. International Journal of Corpus Linguistics, 26(4), 469497. https://doi.org/10.1075/ijcl.21080.curCrossRefGoogle Scholar
De Costa, P. I. (2015). Ethics in applied linguistics research: An introduction. In De Costa, P. I. (Ed.), Ethics in applied linguistics research: Language researcher narratives (pp. 1–12). Routledge. https://doi.org/10.4324/9781315816937CrossRefGoogle Scholar
De Costa, P. I., Sterling, S., Lee, J., Li, W., & Rawal, H. (2021). Research tasks on ethics in applied linguistics. Language Teaching, 54(1), 5870. https://doi.org/10.1017/S0261444820000257CrossRefGoogle Scholar
Demuro, E., & Gurney, L. (2021). Languages/languaging as world-making: The ontological bases of language. Language Sciences, 83, 113. https://doi.org/10.1016/j.langsci.2020.101307CrossRefGoogle Scholar
Dewaele, J. M. (2019). The vital need for ontological, epistemological and methodological diversity in applied linguistics. In Wright, C., Harvey, L., & Simpson, J. (Eds.), Voices and practices in applied linguistics: Diversifying a discipline (pp. 7188). White Rose University Press. https://doi.org/10.22599/BAAL1.eCrossRefGoogle Scholar
Egbert, J., Larsson, T., & Biber, D. (2020). Doing linguistics with a corpus: Methodological considerations for the everyday user. Cambridge University Press. https://doi.org/10.1017/9781108888790CrossRefGoogle Scholar
Europol. (2022). Facing reality? Law enforcement and the challenge of deepfakes, an observatory report from the Europol Innovation Lab. Luxembourg: Publications Office of the European Union. https://doi.org/10.2813/158794Google Scholar
Farrelly, T., & Baker, N. (2023). Generative artificial intelligence: Implications and considerations for higher education practice. Education Sciences, 13(11), 1109. https://doi.org/10.3390/educsci13111109CrossRefGoogle Scholar
Flowerdew, L. (2015). Data-driven learning and language learning theories: Whither the twain shall meet. In Leńko-Szymańska, A. & Boulton, A. (Eds.), Multiple affordances of language corpora for data-driven learning (pp. 1536). John Benjamins. http://digital.casalini.it/9789027268716 10.1075/scl.69.02floCrossRefGoogle Scholar
Fulbright, R., & Walters, G. (2020). Synthetic expertise. In Schmorrow, D. & Fidopiastis, C. (Eds.), Augmented cognition. Human cognition and behavior. HCII 2020. Lecture Notes in Computer Science (pp. 2748). Springer. https://doi.org/10.1007/978-3-030-50439-7_3Google Scholar
Garside, R., Leech, G., & Sampson, G. (Eds.) (1987). The computational analysis of English. Longman.Google Scholar
Goldstein, I., & Papert, S. (1977). Artificial intelligence, language, and the study of knowledge. Cognitive Science, 1(1), 84123. https://doi.org/10.1016/S0364-0213(77)80006-2Google Scholar
Goodwin, J. W., & Hein, U. (1982). Artificial Intelligence and the study of language. Journal of Pragmatics, 6(3–4), 241280. https://doi.org/10.1016/0378-2166(82)90003-0CrossRefGoogle Scholar
Grieve, J., Bartl, S., Fuoli, M., Grafmiller, J., Huang, W., Jawerbaum, A., … Winter, B. (2025). The sociolinguistic foundations of language modeling. Frontiers in Artificial Intelligence, 7, 1472411. https://doi.org/10.3389/frai.2024.1472411CrossRefGoogle ScholarPubMed
Gromova, E. A., Ferreira, D. B., & Begishev, I. R. (2023). ChatGPT and other intelligent chatbots: Legal, ethical and dispute resolution concerns. Revista Brasileira de Alternative Dispute Resolution-Brazilian Journal of Alternative Dispute Resolution-RBADR, 5(10), 153175. https://rbadr.emnuvens.com.br/rbadr/article/view/213/157Google Scholar
Hall, C. J., & Wicaksono, R. (2020). Approaching ontologies of English. In Hall, C. J. & Wicaksono, R. (Eds.), Ontologies of English: Conceptualising the language for learning, teaching, and assessment (pp. 312). Cambridge University Press. https://doi.org/10.1017/9781108685153.001CrossRefGoogle Scholar
Iliadis, A. (2019). The tower of babel problem: Making data make sense with basic formal ontology. Online Information Review, 43(6), 10211045. https://doi.org/10.1108/OIR-07-2018-0210CrossRefGoogle Scholar
Jabotinsky, H. Y., & Sarel, R. (2024). Co-authoring with an AI? Ethical dilemmas and artificial intelligence. Arizona State Law Journal, 56(3), 187223. https://doi.org/10.2139/ssrn.4303959Google Scholar
Jelinek, F. (1976). Continuous speech recognition by statistical methods. Proceedings of the IEEE, 64(4), 532556. https://doi.org/10.1109/PROC.1976.10159CrossRefGoogle Scholar
Ji, H., Han, I., & Ko, Y. (2023). A systematic review of conversational AI in language education: Focusing on the collaboration with human teachers. Journal of Research on Technology in Education, 55(1), 4863. https://doi.org/10.1080/15391523.2022.2142873CrossRefGoogle Scholar
Joseph, S. (2023). Large language model-based tools in language teaching to develop critical thinking and sustainable cognitive structures. Rupkatha Journal on Interdisciplinary Studies in Humanities, 15(4), 123. https://doi.org/10.21659/rupkatha.v15n4.13CrossRefGoogle Scholar
Katsarou, E., Wild, F., Sougari, A. M., & Chatzipanagiotou, P. (2023). A systematic review of voice-based intelligent virtual agents in EFL education. International Journal of Emerging Technologies in Learning (IJET), 18(10), 6585. https://doi.org/10.3991/ijet.v18i10.37723CrossRefGoogle Scholar
Kirova, V. D., Ku, C. S., Laracy, J. R., & Marlowe, T. J. (2023). The ethics of artificial intelligence in the era of generative AI. Journal of Systemics, Cybernetics and Informatics, 21(4), 4250. https://doi.org/10.54808/JSCI.21.04.42CrossRefGoogle Scholar
Konyrova, L. (2024). The evolution of language learning: Exploring AI’s impact on teaching English as a second language. Eurasian Science ReviewAn International Peer-reviewed Multidisciplinary Journal, 2(2), 133138. https://doi.org/10.63034/esr-42CrossRefGoogle Scholar
Kostka, I., & Toncelli, R. (2023). Exploring applications of ChatGPT to English language teaching: Opportunities, challenges, and recommendations. Teaching English as a Second or Foreign Language--TESL-EJ, 27(3), Article3. https://doi.org/10.55593/ej.27107intCrossRefGoogle Scholar
Kuteeva, M., & Andersson, M. (2024). Diversity and standards in writing for publication in the age of AI—Between a rock and a hard place. Applied Linguistics, 45(3), 561567. https://doi.org/10.1093/applin/amae025CrossRefGoogle Scholar
Leech, G., & Wilson, A. (1994). EAGLES Morphosyntactic annotation. EAGLES Report EAGCSG/IR-T3.1. Istituto di Linguistica Computazionale, Pisa.Google Scholar
León, M., Lemmi, C., Sedlacek, Q., Ortiz, N. A., & Feldman, K. (2024). Languaging-as-practice in science education: An alternative to metaphors of language-as-tool. Cultural Studies of Science Education, 19(4), 623631. https://doi.org/10.1007/s11422-024-10228-0CrossRefGoogle Scholar
Li, D., & Wang, H. (2024). Natural language processing in language learning: Personalized and adaptive English language teaching using artificial intelligence. Applied Mathematics and Nonlinear Sciences, 9(1), 114. https://doi.org/10.2478/amns-2024-3290Google Scholar
Li, H. (2023). AI in education: Bridging the divide or widening the gap? Exploring equity, opportunities, and challenges in the digital age. Advances in Education, Humanities and Social Science Research, 8(1), 355355. https://doi.org/10.56028/aehssr.8.1.355.2023CrossRefGoogle Scholar
Li, J., Cao, H., Lin, L., Hou, Y., Zhu, R., & El Ali, A. (2024). User experience design professionals’ perceptions of GenAI. In Proceedings of the CHI Conference on Human Factors in Computing Systems (pp. 118). https://doi.org/10.1145/3613904.3642114CrossRefGoogle Scholar
Lodge, J. M., Thompson, K., & Corrin, L. (2023). Mapping out a research agenda for GenAI in tertiary education. Australasian Journal of Educational Technology, 39(1), 18. https://doi.org/10.14742/ajet.8695CrossRefGoogle Scholar
Machado, L. M. O., Almeida, M. B., & Souza, R. R. (2020). What researchers are currently saying about ontologies: A review of recent web of science articles. Knowledge Organization, 47(3), 199219. https://doi.org/10.5771/0943-7444-2020-3-199CrossRefGoogle Scholar
McCarthy, J., Minsky, M., Rochester, N., & Shannon, C. (1955). A proposal for the Dartmouth summer research project on artificial intelligence. AI Magazine, 27(4), 12. https://doi.org/10.1609/aimag.v27i4.1904Google Scholar
McEnery, A., & Baker, H. (2017). Life as a 17th-century prostitute. Bloomsbury Academic. https://doi.org/10.5040/9781474295062CrossRefGoogle Scholar
McEnery, T., & Brezina, V. (2022). Fundamental principles of corpus linguistics. Cambridge University Press. https://doi.org/10.1017/9781107110625CrossRefGoogle Scholar
McEnery, T., Brezina, V., Gablasova, D., & Banerjee, J. (2019). Corpus linguistics, learner corpora and SLA: Employing technology to analyse language use. Annual Review of Applied Linguistics, 39, 7492. https://doi.org/10.1017/S0267190519000096CrossRefGoogle Scholar
McKnight, L., & Shipp, C. (2024). “Just a tool”? Troubling language and power in generative AI writing. English Teaching: Practice & Critique, 23(1), 2335. https://doi.org/10.1108/ETPC-08-2023-0092Google Scholar
Miller, G. A. R., Beckwith, C. D., Fellbaum, D., & Gross, K. (1990). WordNet: An on-line lexical database. International Journal of Lexicography, 3(4), 235244. https://doi.org/10.1093/ijl/3.4.235CrossRefGoogle Scholar
Milmo, D. (2024, January 8 ). ‘Impossible’ to create AI tools like ChatGPT without copyrighted material, OpenAI says. The Guardian. Retrieved April 4 , 2025, from https://www.theguardian.com/technology/2024/jan/08/ai-tools-chatgpt-copyrighted-material-openai.Google Scholar
Monahan, K., & Burlacu, G. (2024). From burnout to balance: AI-enhance work models. Upwork Research Institute. https://www.upwork.com/research/ai-enhanced-work-modelsGoogle Scholar
Mosqueira-Rey, E., Hernández-Pereira, E., Alonso-Ríos, D., Bibes-Bascarán, J., & Fernández-Leal, A. (2023). Human-in-the-loop machine learning: A state of the art. The Artificial Intelligence Review, 56(4), 30053054. https://doi.org/10.1007/s10462-022-10246-wCrossRefGoogle Scholar
Muñoz-Basols, J., Neville, C., Lafford, B. A., & Godev, C. (2023). Potentialities of applied translation for language learning in the era of artificial intelligence. Hispania, 106(2), 171194. https://doi.org/10.1353/hpn.2023.a899427CrossRefGoogle Scholar
Negrila, A. M. C. (2023). The new revolution in language learning: The power of artificial intelligence and education 4.0. Bulletin of “Carol I” National Defence University, 12(2), 1627. https://doi.org/10.53477/2284-9378-23-17CrossRefGoogle Scholar
Nesi, H. (2024). Are we witnessing the death of dictionaries? Ibérica, 47(47), 714. https://doi.org/10.17398/2340-2784.47.7CrossRefGoogle Scholar
Neumann, V. (1958). The Computer and the brain. Yale University Press.Google Scholar
Nguyen, H., Nguyen, V., Ludovise, S., & Santagata, R. (2024). Misrepresentation or inclusion: Promises of generative artificial intelligence in climate change education. Learning, Media and Technology, 117. https://doi.org/10.1080/17439884.2024.2435834CrossRefGoogle Scholar
Pack, A., & Maloney, J. (2023). Using generative artificial intelligence for language education research: Insights from using OpenAI’s ChatGPT. TESOL Quarterly, 57(4), 15711582. https://doi.org/10.1002/tesq.3253CrossRefGoogle Scholar
Pennycook, A. (2018). Applied linguistics as epistemic assemblage. AILA Review, 31(1), 113134. https://doi.org/10.1075/aila.00015.penCrossRefGoogle Scholar
Pérez-Paredes, P., & Curry, N. (2024). Epistemologies of corpus linguistics across disciplines. Research Methods in Applied Linguistics, 3(3), 111. https://doi.org/10.1016/j.rmal.2024.100141CrossRefGoogle Scholar
Pierce, J., Carroll, J., Hamp, E., Hays, D., Hockett, C., Oettinger, A., & Perlis, A. (1966). Language and machines: Computers in translation and linguistics. ALPAC report, National Academy of Sciences, National Research Council.Google Scholar
Pitrat, J. (1995). AI systems are dumb because AI researchers are too clever. ACM Computing Surveys (CSUR), 27(3), 349350. https://doi.org/10.1145/212094.212124CrossRefGoogle Scholar
Pragya, A. (2024). Generative AI and epistemic diversity of its inputs and outputs: Call for further scrutiny. AI and Society, 12. https://doi.org/10.1007/s00146-024-02097-6Google Scholar
Putland, E., Chikodzore-Paterson, C., & Brookes, G. (2023). Artificial intelligence and visual discourse: A multimodal critical discourse analysis of AI-generated images of “Dementia.” Social Semiotics, 126. https://doi.org/10.1080/10350330.2023.2290555Google Scholar
Rodríguez, S. C. (2023). Epistemología y ontología en ciencia: El reto de la Inteligencia Artificial. Anales De La Real Academia Nacional De Farmacia, 89(3), 379386.Google Scholar
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206215. https://doi.org/10.1038/s42256-019-0048-xCrossRefGoogle ScholarPubMed
Rymes, B., Lee, E., & Negus, S. (2024). Language and education: Ideologies of correctness. Annual Review of Anthropology, 53(1), 187197. https://doi.org/10.1146/annurev-anthro-041422-121726CrossRefGoogle Scholar
Sahebi, S., & Formosa, P. (2024). Artificial intelligence (AI) and global justice. Minds and Machines, 35(4), 129. https://doi.org/10.1007/s11023-024-09708-7CrossRefGoogle Scholar
Sardinha, T. B. (2024). AI-generated vs human-authored texts: A multidimensional comparison. Applied Corpus Linguistics, 4(1), 110. https://doi.org/10.1016/j.acorp.2023.100083Google Scholar
Schalley, A. C. (2019). Ontologies and ontological methods in linguistics. Language and Linguistics Compass, 13(11), 119. https://doi.org/10.1111/lnc3.12356CrossRefGoogle Scholar
Schank, R. C. (1980). How much intelligence is there in artificial intelligence? Intelligence, 4(1), 114. https://doi.org/10.1016/0160-2896(80)90002-1CrossRefGoogle Scholar
Shannon, C., & Weaver, W. (1949). The mathematical theory of communication. University of Illinois Press.Google Scholar
Song, C., & Song, Y. (2023). Enhancing academic writing skills and motivation: Assessing the efficacy of ChatGPT in AI-assisted language learning for EFL students. Frontiers in Psychology, 14, 114. https://doi.org/10.3389/fpsyg.2023.1260843CrossRefGoogle ScholarPubMed
Spennemann, D. H. (2024). Will artificial intelligence affect how cultural heritage will be managed in the future? Responses generated by four GenAI models. Heritage, 7(3), 14531471. https://doi.org/10.3390/heritage7030070CrossRefGoogle Scholar
Spyns, P., & De Bo, J. (2004). Ontologies: A revamped cross-disciplinary buzzword or a truly promising interdisciplinary research topic? Linguistica Antverpiensia, New Series–Themes in Translation Studies, 3, 279292. https://doi.org/10.52034/lanstts.v3i.117Google Scholar
Stahl, B. C., & Eke, D. (2024). The ethics of ChatGPT–Exploring the ethical issues of an emerging technology. International Journal of Information Management, 74, 114. https://doi.org/10.1016/j.ijinfomgt.2023.102700CrossRefGoogle Scholar
Strauß, S. (2021). “Don’t let me be misunderstood”: Critical AI literacy for the constructive use of AI technology. Journal for Technology Assessment in Theory and Practice, 30(3), 4449. https://doi.org/10.14512/tatup.30.3.44Google Scholar
Szudarski, P. (2025). Vocabulary, corpus and language teaching: A machine-generated literature overview. ELT Journal. https://doi.org/10.1093/elt/ccaf006CrossRefGoogle Scholar
Tang, K. S., & Cooper, G. (2024). The role of materiality in an era of GenAI. Science and Education, 116. https://doi.org/10.1007/s11191-024-00508-0Google Scholar
Thompson, B., Dhaliwal, M., Frisch, P., Domhan, T., & Federico, M. (2024). A shocking amount of the web is machine translated: Insights from multi-way parallelism. In Ku, L.-W., Martins, A., & Srikumar, V. (Eds.), Findings of the Association for Computational Linguistics: ACL 2024 (pp. 17631775). Association of Computational Linguistics. https://doi.org/10.18653/v1/2024.findings-acl.103CrossRefGoogle Scholar
Tolstykh, O. M., & Oshchepkova, T. (2024). Beyond ChatGPT: Roles that artificial intelligence tools can play in an English language classroom. Discover Artificial Intelligence, 4(1), . https://doi.org/10.1007/s44163-024-00158-9CrossRefGoogle Scholar
Turing, A. (1948). Intelligent machinery. London: National Physical Laboratory. (Reprinted in Copeland, B. J. (Ed.), The essential Turing (pp. 395432). Oxford University Press, 2004). https://doi.org/10.1093/oso/9780198250791.001.0001CrossRefGoogle Scholar
Turing, A. (1950). Computing machinery and intelligence. Mind, 59(236), 433460. https://doi.org/10.1093/mind/LIX.236.433CrossRefGoogle Scholar
Udaya, M., & Reddy, C. R. (Eds.). 2024. Vocabulary, corpus and language teaching: A machine-generated literature overview. Springer. https://doi.org/10.1007/978-3-031-45986-3CrossRefGoogle Scholar
Vaccaro, M., Almaatouq, A., & Malone, T. (2024). When combinations of humans and AI are useful: A systematic review and meta-analysis. Nature Human Behaviour, 8(12), 22933203. https://doi.org/10.1038/s41562-024-02024-1CrossRefGoogle ScholarPubMed
Vajjala, S. (2024). Generative artificial intelligence and applied linguistics. JALT Journal, 46(1), 5576. https://doi.org/10.37546/JALTJJ46.1-3CrossRefGoogle Scholar
van Wynsberghe, A. (2021). Sustainable AI: AI for sustainability and the sustainability of AI. AI and Ethics, 1(3), 213218. https://doi.org/10.1007/s43681-021-00043-6CrossRefGoogle Scholar
Vetter, M. A., Lucia, B., Jiang, J., & Othman, M. (2024). Towards a framework for local Interrogation of AI ethics: A case study on text generators, academic integrity, and composing with ChatGPT. Computers and Composition, 71, 112. https://doi.org/10.1016/j.compcom.2024.102831CrossRefGoogle Scholar
Walter, Y. (2024). Embracing the future of artificial Intelligence in the classroom: The relevance of AI literacy, prompt engineering, and critical thinking in modern education. International Journal of Educational Technology in Higher Education, 21(15), 129. https://doi.org/10.1186/s41239-024-00448-3CrossRefGoogle Scholar
Wang, P. (2007). Three fundamental misconceptions of artificial intelligence. Journal of Experimental & Theoretical Artificial Intelligence, 19(3), 249268. https://doi.org/10.1080/09528130601143109CrossRefGoogle Scholar
Wei, X., Chen, H., Yu, H., Fei, H., & Liu, Q. (2024). Guided knowledge generation with language models for commonsense reasoning. In Al-Onaizan, Y., Bansal, M., & Chen, Y. N. (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2024 (pp. 11031136). Association of Computational Linguistics. https://doi.org/10.18653/v1/2024.findings-emnlp.61CrossRefGoogle Scholar
Weizenbaum, J. (1976). Computer power and human reason: From judgment to calculation. W. H. Freeman and Company.Google Scholar
Wiener, N. (1961). Cybernetics, or control and communication in the animal and the machine. (2nd ed.). John Wiley & Sons. https://doi.org/10.1037/13140-000Google Scholar
Xiang, J., Tao, T., Gu, Y., Shu, T., Wang, Z., Yang, Z., & Hu, Z. (2023). Language models meet world models: Embodied experiences enhance language models. Advances in Neural Information Processing Systems, 36, 7539275412. https://doi/10.48550/arXiv.2305.10626Google Scholar
Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D., & Zhu, J. (2019). Explainable AI: A brief survey on history, research areas, approaches and challenges. In Natural language processing and Chinese computing: 8th CCF International Conference, NLPCC 2019, Dunhuang, China, October 9–14, 2019, proceedings, part II (Vol. 8, 563574). Springer International Publishing. https://doi.org/10.1007/978-3-030-32236-6_51CrossRefGoogle Scholar
Yaw, K., Plonsky, L., Larsson, T., Sterling, S., & Kytö, M. (2023). Research ethics in applied linguistics. Language Teaching, 56(4), 478494. https://doi.org/10.1017/S0261444823000010CrossRefGoogle Scholar
Yu, D., Li, L., Su, H., & Fuoli, M. (2024). Assessing the potential of LLM-assisted annotation for corpus-based pragmatics and discourse analysis: The case of apology. International Journal of Corpus Linguistics, 29(4), 534561. https://doi.org/10.1075/ijcl.23087.yuCrossRefGoogle Scholar