Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T13:59:25.288Z Has data issue: false hasContentIssue false

Osteology of a perinatal aristonectine (Plesiosauria; Elasmosauridae)

Published online by Cambridge University Press:  30 August 2016

José P. O’Gorman*
Affiliation:
División Paleontología Vertebrados, Museo de La Plata, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA, La Plata, Argentina CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
Marianella Talevi
Affiliation:
CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina Instituto de Investigación en Paleobiología y Geología Universidad Nacional de Río Negro-CONICET, Av Roca 1242, R8332EXZ General Roca, Río Negro, Argentina
Marta S. Fernández
Affiliation:
División Paleontología Vertebrados, Museo de La Plata, Universidad Nacional de La Plata, Paseo del Bosque s/n, B1900FWA, La Plata, Argentina CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina

Abstract

Perinatal specimens give valuable information about the first stages of vertebrate ontogeny. Here, the morphology and palaeohistology of an aristonectine perinatal specimen from Seymour Island (Isla Marambio), López de Bertodano Formation are analysed. The palaeohistological analysis shows incomplete endochondral ossification (retention of a calcified cartilaginous core in the medullary region), predominance of primary bone tissue without secondary remodelling, lack of primary or secondary osteons and of growth marks in the cortical bone, and open vascular spaces not surrounded by a thin coat of lamellar bone tissue. General lines of morphological changes were inferred from comparing the fossil with an adult aristonectine specimen indicating i) a tendency of relatively high and broad posterior cervicals to decrease during ontogeny, ii) a decrease of relative size of the dorsolateral process and an increase of the glenoid ramus and iii) the existence of two separate stages in propodial growth divided into an initial elongation followed by a distal expansion. The presence of a perinatal specimen in the James Ross Archipelago indicates that the region was used as a breeding area by the aristonectines during the last part of the Cretaceous.

Type
Earth Sciences
Copyright
© Antarctic Science Ltd 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araújo, R., Polcyn, M.J., Lindgren, J., Jacobs, L.L., Schulp, A.S., Mateus, O., Gonçalves, A.O. & Morais, M.L. 2015. New aristonectine elasmosaurid plesiosaur specimens from the Early Maastrichtian of Angola and comments on paedomorphism in plesiosaurs. Netherlands Journal of Geosciences - Geologie en Mijnbouw, 94, 93108.CrossRefGoogle Scholar
Brown, D.S. 1981. The English Upper Jurassic Plesiosauroidea (Reptilia) and a review of the phylogeny and classification of the Plesiosauria. Bulletin of the British Museum (Natural History) Geology , 35, 253347.Google Scholar
Buffrénil, V.D. & Mazin, J.M. 1990. Bone histology of the ichthyosaurs: comparative data and functional interpretation. Paleobiology, 16, 435447.CrossRefGoogle Scholar
Cabrera, A. 1941. Un Plesiosaurio nuevo de Cretáceo del Chubut. Revista del Museo de la Plata (Nueva Serie). 2, 113130.Google Scholar
Carpenter, K. 1999. Revision of North American elasmosaurs from the Cretaceous of the western interior. Paludicola, 2, 148173.Google Scholar
Chinsamy, A. & Raath, M.A. 1992. Preparation of fossil bone for histological examination. Palaeontologia Africana, 29, 3944.Google Scholar
Chinsamy-Turan, A. 2005. The microstructure of dinosaur bones: deciphering biology through fine scale techniques. Baltimore, MD: Johns Hopkins University Press, 216 pp.CrossRefGoogle Scholar
Cope, E.D. 1869. Extinct Batrachia, Reptilia and Aves of North America. Transactions of the American Philosophical Society, 14, 1252.Google Scholar
Cruickshank, A.R.I. & Fordyce, R.E. 2002. A new marine reptile (Sauropterygia) from New Zealand: further evidence for a Late Cretaceous austral radiation of cryptoclidid plesiosaurs. Palaeontology, 45, 557575.CrossRefGoogle Scholar
De Blainville, H.D. 1835. Description de quelques espèces de reptiles de la Californie, précédée de l’analyse d’un système général d’Erpétologie et d’Amphibiologie. Nouvelles Annales du Muséum (National) d’Histoire Naturelle, Paris , 4, 233296.Google Scholar
Francillon-Vieillot, H., de Buffrénil, V., Castanet, J., Géraudie, J., Meunier, F.J., Sire, J.Y., Zylberberg, L. & de Ricqlés, A. 1990. Microstructure and mineralization of vertebrate skeletal tissues. In Carter, J.G., ed. Skeletal biomineralization: patterns, processes and evolutionary trends. New York, NY: Van Nostrand Reinhold, 471530.Google Scholar
Gasparini, Z., Bardet, N., Martin, J.E. & Fernández, M. 2003. The elasmosaurid Aristonectes Cabrera from the latest Cretaceous of South America and Antarctica. Journal of Vertebrate Paleontology, 23, 104115.CrossRefGoogle Scholar
Hiller, N., Mannering, A.A., Jones, C.M. & Cruickshank, A.R. 2005. The nature of Mauisaurus haasti Hector, 1874 (Reptilia: Plesiosauria). Journal of Vertebrate Paleontology, 25, 588601.Google Scholar
Horner, J.R., Padian, K. & de Ricqlès, A. 2001. Comparative osteohistology of some embryonic and perinatal archosaurs: developmental and behavioral implications for dinosaurs. Paleobiology, 27, 3958.Google Scholar
Ketchum, H.F. & Benson, R.B. 2011. A new pliosaurid (Sauropterygia, Plesiosauria) from the Oxford Clay Formation (Middle Jurassic, Callovian) of England: evidence for a gracile, longirostrine grade of Early-Middle Jurassic pliosaurids. Studies on Fossil Tetrapods, No. 86, 109129.Google Scholar
Klein, N., Houssaye, A., Neenan, J.M. & Scheyer, T.M. 2015. Long bone histology and microanatomy of Placodontia (Diapsida: Sauropterygia). Contributions to Zoology, 84, 5984.CrossRefGoogle Scholar
Kubo, T., Mitchell, M.T. & Henderson, D.M. 2012. Albertonectes vanderveldei, a new elasmosaur (Reptilia, Sauropterygia) from the Upper Cretaceous of Alberta. Journal of Vertebrate Paleontology, 32, 557572.Google Scholar
Macellari, C.E. 1988. Stratigraphy, sedimentology, and paleoecology of Upper Cretaceous/Paleocene shelf-deltaic sediments of Seymour Island. Geological Society of America Memoirs, 169, 2554.Google Scholar
Martin, J.E., Sawyer, J.F., Reguero, M. & Case, J.A. 2007. Occurrence of a young elasmosaurid plesiosaur skeleton from the Late Cretaceous (Maastrichtian) of Antarctica. USGS OF-2007-1047, Short Research Paper 066, 10.3133/of2007-1047.srp066.Google Scholar
Montes, M., Nozal, F., Santillana, S., Marenssi, S. & Olivero, E. 2013. Mapa Geológico de la isla Marambio (Seymour) Escala 1: 20.000. Serie Cartográfica Geocientífica Antártica.Google Scholar
O’Gorman, J.P. 2012. The oldest elasmosaurs (Sauropterygia, Plesiosauria) from Antarctica, Santa Marta Formation (upper Coniacian? Santonian-upper Campanian) and Snow Hill Island Formation (upper Campanian-lower Maastrichtian), James Ross Island. Polar Research, 31, 10.3402/polar.v31i0.11090.Google Scholar
O’Gorman, J.P. 2013. Plesiosaurios del Cretácico Superior de Patagonia y Península Antártica. PhD thesis, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 527 pp. [Unpublished]. Available at: http://sedici.unlp.edu.ar/bitstream/handle/10915/26140/Tomo_I Documento completo.pdf?sequence=4.Google Scholar
O’Gorman, J.P., Gasparini, Z. & Salgado, L. 2013. Postcranial morphology of Aristonectes (Plesiosauria, Elasmosauridae) from the Upper Cretaceous of Patagonia and Antarctica. Antarctic Science, 25, 7182.Google Scholar
O’Gorman, J.P., Gasparini, Z. & Salgado, L. 2014a. Reappraisal of Tuarangisaurus? cabazai (Elasmosauridae, Plesiosauria) from the upper Maastrichtian of northern Patagonia, Argentina. Cretaceous Research, 47, 3947.CrossRefGoogle Scholar
O’Gorman, J.P., Salgado, L., Olivero, E.B. & Marenssi, S.A. 2015. Vegasaurus molyi, gen. et sp. nov. (Plesiosauria, Elasmosauridae), from the Cape Lamb Member (lower Maastrichtian) of the Snow Hill Island Formation, Vega Island, Antarctica, and remarks on Weddellian Elasmosauridae. Journal of Vertebrate Paleontology, 35, 10.1080/02724634.2014.931285.Google Scholar
O’Gorman, J.P., Olivero, E.B., Santillana, S., Everhart, M.J. & Reguero, M. 2014b. Gastroliths associated with an Aristonectes specimen (Plesiosauria, Elasmosauridae), López de Bertodano Formation (upper Maastrichtian) Seymour Island (Is. Marambio), Antarctic Peninsula. Cretaceous Research, 50, 228237.CrossRefGoogle Scholar
O’Keefe, F.R. & Hiller, N. 2006. Morphologic and ontogenetic patterns in elasmosaur neck length, with comments on the taxonomic utility of neck length variables. Paludicola, 5, 206229.Google Scholar
O’Keefe, F.R. & Street, H.P. 2009. Osteology of the cryptocleidoid plesiosaur Tatenectes laramiensis, with comments on the taxonomic status of the Cimoliasauridae. Journal of Vertebrate Paleontology, 29, 4857.Google Scholar
Olivero, E.B. & Medina, F.A. 2000. Patterns of Late Cretaceous ammonite biogeography in southern high latitudes: the family Kossmaticeratidae in Antarctica. Cretaceous Research, 21, 269279.CrossRefGoogle Scholar
Olivero, E.B., Ponce, J.J. & Martinioni, D.R. 2008. Sedimentology and architecture of sharp-based tidal sandstones in the upper Marambio Group, Maastrichtian of Antarctica. Sedimentary Geology, 210, 1126.CrossRefGoogle Scholar
Otero, R.A. & O’Gorman, J.P. 2013. Identification of the first postcranial skeleton of Aristonectes Cabrera (Plesiosauroidea, Elasmosauridae) from the upper Maastrichtian of the south-eastern Pacific, based on a bivariate graphic analysis. Cretaceous Research, 41, 8689.Google Scholar
Otero, R.A., Soto-Acuña, S. & Rubilar-Rogers, D. 2012. A postcranial skeleton of an elasmosaurid plesiosaur from the Maastrichtian of central Chile, with comments on the affinities of Late Cretaceous plesiosauroids from the Weddellian Biogeographic Province. Cretaceous Research, 37, 8999.Google Scholar
Otero, R.A., Soto-Acuña, S., O’Keefe, F.R., O’Gorman, J.P., Stinnesbeck, W.S., Suárez, M.E., Rubilar-Rogers, D., Salazar, C. & Quinzio-Sinn, L.A. 2014. Aristonectes quiriquinensis, sp. nov., a new highly derived elasmosaurid from the upper Maastrichtian of central Chile. Journal of Vertebrate Paleontology, 34, 100125.Google Scholar
Owen, R. 1860. On the orders of fossil and recent Reptilia, and their distribution in time. Reports of the British Association for the Advancement of Science, 29, 153166.Google Scholar
Ricqlés, A., Se, M.O., Antunes, M. & Taquet, P. 2001. Histomorphogenesis of embryos of Upper Jurassic theropods from Lourinhã (Portugal). Comptes Rendus de l’Académie des Sciences IIA - Earth and Planetary Science, 332, 647656.Google Scholar
Vincent, P., Bardet, N., Suberbiola, X.P., Bouya, B., Amaghzaz, M. & Meslouh, S. 2011. Zarafasaura oceanis, a new elasmosaurid (Reptilia: Sauropterygia) from the Maastrichtian Phosphates of Morocco and the palaeobiogeography of latest Cretaceous plesiosaurs. Gondwana Research, 19, 10621073.CrossRefGoogle Scholar
Welles, S.P. 1943. Elasmosaurid plesiosaurs with description of new material from California and Colorado. Memoirs of the University of California, 13, 125254.Google Scholar
Welles, S.P. 1952. A review of the North American Cretaceous elasmosaurs. University of California Publications in Geological Sciences, 29, 47144.Google Scholar
Welles, S.P. 1962. A new species of elasmosaur from the Aptian of Columbia and a review of the Cretaceous plesiosaurs. University of California, Publications in the Geological Sciences, 44, 196.Google Scholar
Zinsmeister, W.J. 1979. Biogeographic significance of the late Mesozoic and early Tertiary molluscan faunas of Seymour Island (Antarctic Peninsula) to the final break-up of Gondwanaland. In Gray, J. & Boucot, A.J., eds. Historical biogeography, plate tectonics and the changing environment. Corvallis, OR: Oregon State University Press, 349355.Google Scholar