Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T06:32:32.282Z Has data issue: false hasContentIssue false

Plant assemblages from the Shafer Peak Formation (Lower Jurassic), north Victoria Land, Transantarctic Mountains

Published online by Cambridge University Press:  23 November 2010

Benjamin Bomfleur*
Affiliation:
Forschungsstelle für Paläobotanik, Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 57, D-48143 Münster, Germany
Christian Pott
Affiliation:
Department of Palaeobotany, Swedish Museum of Natural History, Box 50007, S-104 05 Stockholm, Sweden
Hans Kerp
Affiliation:
Forschungsstelle für Paläobotanik, Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster, Hindenburgplatz 57, D-48143 Münster, Germany

Abstract

The Jurassic plant fossil record of Gondwana is generally meagre, which renders phytogeographic and palaeoclimatic interpretations difficult to date. Moreover, plant fossil assemblages mainly consist of impressions/compressions with rather limited palaeobiological and palaeoecological significance. We here present a detailed survey of new Early Jurassic plant assemblages from the Pliensbachian Shafer Peak Formation, north Victoria Land, Transantarctic Mountains. Some of the well-preserved fossils yield cuticle. The floras consist of isoetalean lycophytes, sphenophytes, several ferns, bennettitaleans, and conifers. In addition, three distinct kinds of conifer shoots and needles were obtained from bulk macerations. The composition of the plant communities is typical for Jurassic macrofloras of Gondwana, which underscores the general homogeneity of Southern Hemisphere vegetation during the mid-Mesozoic. Altogether, the plant fossil assemblages indicate humid and warm temperate conditions, which is in contrast to recent palaeoclimatic models that predict cool temperate climates for the continental interior of southern Gondwana during the Jurassic. However, there is no evidence for notable soil development or peat accumulation. The environmental conditions were apparently very unstable due to intense volcanic activity that resulted in frequent perturbation of landscape and vegetation, hampering the development of long-lived climax communities. Cuticles of bennettitaleans and conifers show xeromorphic features that may have been beneficial for growth in this volcanic environment.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appert, O. 1973. Die Pteridophyten aus dem Oberen Jura des Manamana in Südwest-Madagaskar. Schweizerische Paläontologische Abhandlungen, 94, 162.Google Scholar
Baldoni, A.M. 1990. Tafofloras del Jurásico Medio de la Patagonia extraandina. In Volkheimer, W., ed. Bioestratigrafía de los Sístemas Regionales del Jurásico y Cretácico de America del Sur, 2. Mendoza: Comité Sudamericano del Jurásico y Cretácico, 313354.Google Scholar
Banerji, J. Pal, P.K. 1986. Allocladus papillosus n. sp. from the Salt Range, Pakistan. Geophytology, 16, 7072.Google Scholar
Barnard, P.D.W. Miller, J.C. 1976. Flora of the Shemshak Formation (Elburz, Iran). III. Middle Jurassic (Dogger) Plants from Kutumbargah, Vasek Gah and Imam Manak. Palaeontographica, 155B, 31117.Google Scholar
Bateman, R.M. Scott, A.C. 1990. A reappraisal of the Dinantian floras at Oxroad Bay, East Lothian, Scotland. 2. Volcanicity, palaeoenvironments, and palaeoecology. Transactions of the Royal Society of Edinburgh, Earth Sciences, 81, 161194.CrossRefGoogle Scholar
Bomfleur, B. Kerp, H. 2010. The first record of the dipterid fern leaf Clathropteris Brongniart from Antarctica and its relation to Polyphacelus stormensis Yao, Taylor et Taylor nov. emend. Review of Palaeobotany and Palynology, 160, 143153.CrossRefGoogle Scholar
Busche, R., Hass, H. Remy, W. 1978. Möglichkeiten und Grenzen der Deutung von Ökologie und Klima mit Hilfe disperser Kutikulen aus dem Autun des Nahe-Raumes (Pfalz). Argumenta Palaeobotanica, 5, 149160.Google Scholar
Cantrill, D.J. 2000. A new macroflora from the South Orkney Islands, Antarctica: evidence of an Early to Middle Jurassic age for the Powell Island Conglomerate. Antarctic Science, 12, 185195.CrossRefGoogle Scholar
Cantrill, D.J. Hunter, M.A. 2005. Macrofossil floras of the Latady Basin, Antarctic Peninsula. New Zealand Journal of Geology and Geophysics, 48, 537553.CrossRefGoogle Scholar
Corsin, P. 1973. Sur une flore infraliasique du Boulonnais (Rinxent-Marquise, Pas-de-Calais, France). Review of Palaeobotany and Palynology, 15, 5770.CrossRefGoogle Scholar
Edwards, W.N. 1934. Jurassic plants from New Zealand. Annals and Magazine of Natural History, 10, 81109.CrossRefGoogle Scholar
Elliot, D.H. Fleming, T.H. 2008. Physical volcanology and geological relationships of the Jurassic Ferrar Large Igneous Province, Antarctica. Journal of Volcanology and Geothermal Research, 172, 2037.CrossRefGoogle Scholar
Escapa, I., Cúneo, R. Cladera, G. 2008. New evidence for the age of the Jurassic Flora from Cañadón del Zaino, Sierra de Taquetrén, Chubut. Ameghiniana, 45, 633637.Google Scholar
Falcon-Lang, H.J. Cantrill, D.J. 2001. Leaf phenology of some mid-Cretaceous polar forests, Alexander Island, Antarctica. Geological Magazine, 138, 3952.CrossRefGoogle Scholar
Feruglio, E. 1951. Piante del Mesozoico della Patagonia. Pubblicazioni dell’Istituto di Geologia dell’Università di Torino, 1, 3580.Google Scholar
Gee, C.T. 1989. Revision of the Late Jurassic/Early Cretaceous flora from Hope Bay, Antarctica. Palaeontographica, 213B, 149214.Google Scholar
Golonka, J. 2007. Late Triassic and Early Jurassic palaeogeography of the world. Palaeogeography, Palaeoclimatology, Palaeoecology, 244, 297307.CrossRefGoogle Scholar
Gould, R.E. 1974. The fossil flora of the Walloon Coal Measures: a survey. Proceedings of the Royal Society of Queensland, 85, 3341.Google Scholar
Hallam, A. 1994. Jurassic climates as inferred from the sedimentary and fossil record. In Allen, J.R.L., Hoskins, B.J., Sellwood, B.W., Spicer, R.A. & Valdes, P.J., eds. Palaeoclimates and their modelling: with special reference to the Mesozoic Era. London: Chapman and Hall, 7988.CrossRefGoogle Scholar
Halle, T.H. 1913. The Mesozoic flora of Graham Land. Wissenschaftliche Ergebnisse der Schwedischen Südpolar-Expedition 1901–1903, 3, 1123.Google Scholar
Harris, T.M. 1931. The fossil flora of Scoresby Sound East Greenland. Part 1: Cryptogams (exclusive of Lycopodiales). Meddelelser om Grønland, 85, 1104.Google Scholar
Harris, T.M. 1961. The Yorkshire Jurassic flora I. Thallophyta–Pteridophyta. London: British Museum of Natural History, 212 pp.CrossRefGoogle Scholar
Harris, T.M. 1969. The Yorkshire Jurassic flora III. Bennettitales. London: British Museum of Natural History, 186 pp.Google Scholar
Harris, T.M. 1979. The Yorkshire Jurassic flora V. Coniferales. London: British Museum of Natural History, 166 pp.Google Scholar
Haworth, M. McElwain, J. 2008. Hot, dry, wet, cold or toxic? Revisiting the ecological significance of leaf and cuticular micromorphology. Palaeogeography, Palaeoclimatology, Palaeoecology, 262, 7990.CrossRefGoogle Scholar
Hunter, M.A., Cantrill, D.J. Flowerdew, M.J. 2006. Latest Jurassic–earliest Cretaceous age for a fossil flora from the Latady Basin, Antarctic Peninsula. Antarctic Science, 18, 261264.CrossRefGoogle Scholar
Hunter, M.A., Cantrill, D.J., Flowerdew, M.J. Millar, I.L. 2005. Mid-Jurassic age for the Botany Bay Group: implications for Weddell Sea Basin creation and southern hemisphere biostratigraphy. Journal of the Geological Society of London, 162, 745748.CrossRefGoogle Scholar
Jansson, I.-M., McLoughlin, S., Vajda, V. Pole, M. 2008. An Early Jurassic flora from the Clarence-Moreton Basin, Australia. Review of Palaeobotany and Palynology, 150, 521.CrossRefGoogle Scholar
Kerp, H. 1990. The study of fossil gymnosperms by means of cuticular analysis. Palaios, 5, 548569.CrossRefGoogle Scholar
Kräusel, R. 1959. Die Juraflora von Sassendorf bei Bamberg. II. Samenpflanzen. Senckenbergiana Lethaea, 40, 97136.Google Scholar
Krings, M., Klavins, S.D., DiMichele, W.A., Kerp, H. Taylor, T.N. 2005. Epidermal anatomy of Glenopteris splendens Sellards nov. emend., an enigmatic seed plant from the Lower Permian of Kansas (USA). Review of Palaeobotany and Palynology, 136, 159180.CrossRefGoogle Scholar
Lovelace, D.M. 2006. An Upper Jurassic Morrison Formation fire-induced debris flow: taphonomy and paleoenvironment of a sauropod (Sauropoda: Supersaurus vivianae) locality, east-central Wyoming. In Foster, J.R. & Lucas, S.G., eds. Paleontology and geology of the Upper Jurassic Morrison Formation. New Mexico Museum of Natural History and Science Bulletin, 36, 47–56.Google Scholar
Manum, S.B., Bose, M.N. Vigran, J.O. 1991. The Jurassic flora of Andøya, northern Norway. Review of Palaeobotany and Palynology, 68, 233256.CrossRefGoogle Scholar
McLoughlin, S. 2001. The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Australian Journal of Botany, 49, 271300.CrossRefGoogle Scholar
McLoughlin, S. Pott, C. 2009. The Jurassic flora of Western Australia. GFF, 131, 113136.CrossRefGoogle Scholar
McLoughlin, S., Tosolini, A.-M.P., Nagalingum, N.S. Drinnan, A.N. 2002. Early Cretaceous (Neocomian) flora and fauna of the Lower Strzelecki Group, Gippsland Basin, Victoria. Memoirs of the Association of Australasian Palaeontologists, 26, 1144.Google Scholar
Nagalingum, N.S., Drinnan, A.N. McLoughlin, S. 2005. A new fossil conifer, Bellarinea richardsii, from the Early Cretaceous Strzelecki Group, southeastern Victoria. Proceedings of the Royal Society of Victoria, 117, 295306.Google Scholar
Neinhuis, C. Barthlott, W. 1997. Characterization and distribution of water-repellent, self-cleaning plants. Annals of Botany, 79, 667677.CrossRefGoogle Scholar
Oishi, S. 1940. The Mesozoic floras of Japan. Journal of the Faculty of Sciences of the Hokkaido Imperial University, 4, 123480.Google Scholar
Okubo, A. Kimura, T. 1991. Cupressinocladus obatae, sp. nov., from the Lower Cretaceous Choshi Group, in the Outer Zone of Japan. Bulletin of the National Science Museum Tokyo, Series, C17, 91109.Google Scholar
Orton, G.J. 1996. Volcanic environments. In Reading, H.G., ed. Sedimentary environments: processes, facies, and stratigraphy, 3rd ed. Oxford: Blackwell Science, 485567.Google Scholar
Osborne, C.P., Royer, D.L. Beerling, D.J. 2004. Adaptive role of leaf habit in extinct polar forests. International Forestry Review, 6, 181186.CrossRefGoogle Scholar
Parrish, J.T. 1993. Climate of the supercontinent Pangea. Journal of Geology, 101, 215233.CrossRefGoogle Scholar
Plumstead, E.P. 1962. Fossil floras of Antarctica. Trans-Antarctic Expedition 1955–1958, Scientific Reports, 9(2), 1154.Google Scholar
Pole, M.S. 2000. Mid-Cretaceous conifers from the Eromanga Basin, Australia. Australian Systematic Botany, 13, 153197.CrossRefGoogle Scholar
Pott, C., Krings, M. Kerp, H. 2007. A surface microrelief on the leaves of Glossophyllum florinii (?Ginkgoales) from the Upper Triassic of Lunz, Austria. Botanical Journal of the Linnean Society, 153, 8795.CrossRefGoogle Scholar
Rees, P.M. Cleal, C.J. 2004. Lower Jurassic floras from Hope Bay and Botany Bay, Antarctica. Special Papers in Palaeontology, 72, 590.Google Scholar
Rees, P.M., Ziegler, A.M. Valdes, P.J. 2000. Jurassic phytogeography and climates: new data and model comparisons. In Huber, B.T., MacLeod, K.G. & Wing, S.L., eds. Warm climates in Earth history. Cambridge: Cambridge University Press, 297318.Google Scholar
Riley, T., Crame, J.A., Thomson, M.R.A. Cantrill, D.J. 1997. Late Jurassic (Kimmeridgian-Tithonian) macrofossil assemblage from Jason Peninsula, Graham Land: evidence for a significant northward extension of the Latady Formation. Antarctic Science, 9, 432440.CrossRefGoogle Scholar
Ross, P.-S., Ukstins-Peate, I., McClintock, M.K., Xu, Y.G., Skiling, I.P., White, J.D.L. Houhgton, B.F. 2005. Mafic volcaniclastic deposits in flood basalt provinces: a review. Journal of Volcanology and Geothermal Research, 145, 281314.CrossRefGoogle Scholar
Schöner, R., Viereck-Götte, L., Schneider, J., Bomfleur, B. 2007. Triassic–Jurassic sediments and multiple volcanic events in north Victoria Land, Antarctica: a revised stratigraphic model. In Cooper, A.K. & Raymond, C.R., eds. Antarctica: a keystone in a changing world – Online Proceedings of the 10th ISAES. USGS Open-File Report 2007–1047, Short Research Paper 102, 5 pp, 10.3133/of2007-1047.srp102.Google Scholar
Schweitzer, H.-J. Kirchner, M. 2003. Die Rhäto-Jurassischen Floren des Iran und Afghanistans: 13. Cycadophyta III. Bennettitales. Palaeontographica, 264B, 1166.Google Scholar
Schweitzer, H.-J., Schweitzer, U., Kirchner, M., van Konijnenburg-van Cittert, J.H.A. Ashraf, R.A. 2009. The Rhaeto-Jurassic flora of Iran and Afghanistan. 14. Pterophyta – Leptosporangiatae. Palaeontographica, 279B, 1108.Google Scholar
Scotese, C.R., Boucot, A.J. McKerrow, W.S. 1999. Gondwanan palaeogeography and palaeoclimatology. Journal of African Earth Sciences, 28, 99114.CrossRefGoogle Scholar
Scott, A.C. 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 291, 1139.CrossRefGoogle Scholar
Sun, B.-N., Yang, S. Shen, G.-L. 1989. A study on the cuticle of Otozamites hsiangchiensis Sze. Acta Botanica Sinica, 31, 883888.Google Scholar
Taylor, E.L., Taylor, T.N. Krings, M. 2009. Paleobotany: the biology and evolution of fossil plants. Amsterdam: Academic Press, 1230 pp.Google Scholar
Tidwell, W.D., Kim, J.-H. Kimura, T. 1987. Mid-Mesozoic leaves from near Ida Bay, southern Tasmania, Australia. Papers and Proceedings of the Royal Society of Tasmania, 121, 159170.CrossRefGoogle Scholar
Torsvik, T.H., Gaina, C. Redfield, T.F. 2008. Antarctica and global paleogeography: from Rodinia, through Gondwanaland and Pangea, to the birth of the Southern Ocean and the opening of gateways. In Cooper, A.K., Barrett, P.J., Stagg, H., Storey, B., Stump, E., Wise W. & the 10th ISAES editorial team, eds. Antarctica: a keystone in a changing world. Washington, DC: The National Academies Press, Proceedings of the 10th International Symposium on Antarctic Earth Sciences, 125–140.Google Scholar
Townrow, J.A. 1967a. On a conifer from the Jurassic of East Antarctica. Papers and Proceedings of the Royal Society of Tasmania, 101, 137147.CrossRefGoogle Scholar
Townrow, J.A. 1967b. The Brachyphyllum crassum complex of fossil conifers. Papers and Proceedings of the Royal Society of Tasmania, 101, 149172.CrossRefGoogle Scholar
Vakhrameev, V.A. 1991. Jurassic and Cretaceous floras and climates of the Earth. Cambridge: Cambridge University Press, 318 pp.Google Scholar
Van Konijnenburg-van Cittert, J.H.A. 1993. A review of the Matoniaceae based on in situ spores. Review of Palaeobotany and Palynology, 78, 235267.CrossRefGoogle Scholar
Viereck-Götte, L., Schöner, R., Bomfleur, B. Schneider, J. 2007. Multiple shallow level sill intrusions coupled with hydromagmatic explosive eruptions marked the initial phase of Ferrar Magmatism in northern Victoria Land, Antarctica. In Cooper, A.K. & Raymond, C.R., eds. Antarctica: a keystone in a changing world – Online Proceedings of the 10th ISAES. USGS Open-File Report 2007-1047, Short Research Paper 104, 5 pp, 10.3133/of2007-1047.srp104.Google Scholar
Wang, Y.-D., Ni, Q., Jiang, Z.-K. Tian, N. 2008. Diversity variation and tempo-spatial distribution of Otozamites (Bennettitales) in the Mesozoic of China. Palaeoworld, 17, 222234.CrossRefGoogle Scholar
Watson, J. 1988. The Cheirolepidiaceae. In Beck, C.B., ed. Origin and evolution of gymnosperms. New York: Columbia University Press, 382447.Google Scholar
Watson, J. Batten, D.J. 1990. A revision of the English Wealden flora. II. Equisetales. Bulletin of the British Museum (Natural History), Geology, 46, 3760.Google Scholar
Watson, J. Sincock, C.A. 1991. Bennettitales of the English Wealden. Monograph of the Palaeontographical Society London, 145, 1228.Google Scholar
Yao, X., Taylor, T.N. Taylor, E.L. 1991. Silicified dipterid ferns from the Jurassic of Antarctica. Review of Palaeobotany and Palynology, 67, 353362.CrossRefGoogle Scholar