Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-11T05:14:25.317Z Has data issue: false hasContentIssue false

Possible multiple introductions of Cladonia borealis to King George Island

Published online by Cambridge University Press:  03 April 2012

Chae Haeng Park
Affiliation:
Division of Polar Life Sciences, Korea Polar Research Institute, 12 Gaetbeol-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea School of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea
Gajin Jeong
Affiliation:
School of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-747, Republic of Korea
Soon Gyu Hong*
Affiliation:
Division of Polar Life Sciences, Korea Polar Research Institute, 12 Gaetbeol-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea
*
*corresponding author: polypore@kopri.re.kr

Abstract

Many lichens have extensive distributional ranges covering several climatic zones and are able to colonize extreme habitats, including high alpine and polar regions. Cladonia borealis, one of the dominant lichen species on King George Island, is a cosmopolitan species inhabiting polar, subpolar, and alpine areas. It is usually found on soil, humus, and mosses, and is morphologically highly diverse. To understand the phylogeographic history of C. borealis on King George Island, we compared specimens from there with specimens from Norway and Chile. We conducted phylogenetic and haplotype network analyses of the partial SSU, ITS1-5.8S-ITS2, and partial LSU rDNA sequences including intron sequences in LSU rRNA genes. Nuclear rDNA locus of C. borealis from King George Island was separated into two monophyletic lineages. It is suggested that they originated in multiple independent introduction events after long-distance dispersal from other continents.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahti, T. 2000. Cladoniaceae (Flora Neotropica Monograph No. 78). New York: New York Botanical Garden Press, 362 pp.Google Scholar
Bailey, R.H.James, P.W. 1979. Birds and the dispersal of lichen propagules. The Lichenologist, 11, 105106.CrossRefGoogle Scholar
Bayev, A.A., Georgiev, O.I., Hadjiolov, A.A., Nikolaev, N., Skryabin, K.G.Zakharyev, V.M. 1981. The structure of the yeast ribosomal RNA genes. 3. Precise mapping of the 18 S and 25 S rRNA genes and structure of the adjacent regions. Nucleic Acids Research, 9, 789799.CrossRefGoogle ScholarPubMed
Brodo, I.M., Sharnoff, S.D.Sharnoff, S. 2001. Lichens of North America. New Haven, NJ: Yale University Press, 828 pp.Google Scholar
Buschbom, J. 2007. Migration between continents: geographical structure and long-distance gene flow in Porpidia flavicunda (lichen-forming Ascomycota). Molecular Ecology, 16, 18351846.CrossRefGoogle ScholarPubMed
Chun, J., Grim, C.J., Hasan, N.A., Lee, J.H., Choi, S.Y., Haley, B.J., Taviani, E., Jeon, Y.-S., Kim, D.W., Lee, J.-H., Brettin, T.S., Bruce, D.C., Challacombe, J.F., Detter, J.C., Han, C.S., Munk, A.C., Chertkov, O., Meincke, L., Saunders, E., Walters, R.A., Huq, A., Nair, G.B.Colwell, R.R. 2009. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proceedings of the National Academy of Sciences of the United States of America, 106, 15 44215 447.CrossRefGoogle ScholarPubMed
Clement, M., Posada, D.Crandall, K.A. 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 16571659.CrossRefGoogle ScholarPubMed
Crespo, A.Perez-Ortega, S. 2009. Cryptic species and species pairs in lichens : a discussion on the relationship between molecular phylogenies and morphological characters. Anales del Jardín Botánico de Madrid, 66, 7181.CrossRefGoogle Scholar
Crespo, A., Molina, M.C., Blanco, O., Schroeter, B., Sancho, L.G.Hawksworth, D.L. 2002. rDNA ITS and β-tubulin gene sequence analyses reveal two monophyletic groups within the cosmopolitan lichen Parmelia saxatilis. Mycological Research, 106, 788795.CrossRefGoogle Scholar
Egevang, C., Stenhouse, I.J., Phillips, R.A., Petersen, A., Fox, J.W.Silk, J.R.D. 2010. Tracking of Arctic terns Sterna paradisaea reveals longest animal migration. Proceedings of the National Academy of Sciences of the United States of America, 107, 20782081.CrossRefGoogle ScholarPubMed
Fernández-Mendoza, F., Domaschke, S., García, M.A., Jordan, P., Martín, M.P.Printzen, C. 2011. Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Molecular Ecology, 20, 12081232.CrossRefGoogle ScholarPubMed
Galloway, D.J.Aptroot, A. 1995. Bipolar lichens: a review. Cryptogamic Botany, 5, 184191.Google Scholar
Gardes, M.Bruns, T.D. 1993. ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113118.CrossRefGoogle Scholar
Grube, M.Kroken, S. 2000. Molecular approaches and the concept of species and species complexes in lichenized fungi. Mycological Research, 104, 12841294.CrossRefGoogle Scholar
Kappen, L.Straka, H. 1988. Pollen and spores transport into the Antarctic. Polar Biology, 8, 173180.CrossRefGoogle Scholar
Kim, J.H., Ahn, I.-Y., Hong, S.G., Andreev, M., Lim, K.-M., Oh, M.J., Koh, Y.J.Hur, J.-S. 2006. Lichen flora around the Korean Antarctic Scientific Station, King George Island, Antarctic. Journal of Microbiology, 44, 480491.Google Scholar
Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111120.CrossRefGoogle ScholarPubMed
Lee, J.S., Lee, H.K., Hur, J.-S., Andreev, M.Hong, S.G. 2008. Diversity of the lichenized fungi in King George Island, Antarctica, revealed by phylogenetic analysis of partial large subunit rDNA sequences. Journal of Microbiology and Biotechnology, 18, 10161023.Google Scholar
Lücking, R. 2003. Takhtajan's floristic regions and folicolous lichen biogeography: a compatibility analysis. The Lichenologist, 35, 3353.CrossRefGoogle Scholar
Lücking, R., Papong, K., Thammathaworn, A.Boonpragob, K. 2008. Historical biogeography and phenotype-phylogeny of Chroodiscus (lichenized Ascomycota: Ostropales: Graphidaceae). Journal of Biogeography, 35, 23112327.CrossRefGoogle Scholar
Mankin, A.S., Skryabin, K.G.Rubtsov, P.M. 1986. Identification of ten additional nucleotides in the primary structure of yeast 18S rRNA. Gene, 44, 143145.CrossRefGoogle ScholarPubMed
Marshall, W.A. 1996. Aerial dispersal of lichen soredia in the Maritime Antarctic. New Phytologist, 134, 523530.CrossRefGoogle Scholar
Muñoz, J., Felicísimo, Á.M., Cabezas, F., Burgaz, A.R.Martínez, I. 2004. Wind as a long-distance dispersal vehicle in the Southern Hemisphere. Science, 304, 11441147.CrossRefGoogle ScholarPubMed
Myllys, L., Stenroos, S., Thell, A.Ahti, T. 2003. Phylogeny of bipolar Cladonia arbuscula and Cladonia mitis (Lecanorales, Euascomycetes). Molecular Phylogenetics and Evolution, 27, 5869.CrossRefGoogle ScholarPubMed
Oda, T., Tanaka, C.Tsuda, M. 2004. Molecular phylogeny and biogeography of the widely distributed Amanita species, A. muscaria and A. panthenna. Mycological Research, 108, 885896.CrossRefGoogle Scholar
Olech, M. 2004. Lichens of King George Island, Antarctica. Krakow: The Institute of Botany, Jagiellonian University, 391 pp.Google Scholar
Otálora, M.A.G., Martínez, I., Aragón, G.Molina, M.C. 2010. Phylogeography and divergence date estimates of a lichen species complex with a disjunct distribution pattern. American Journal of Botany, 97, 216223.CrossRefGoogle ScholarPubMed
Øvstedal, D.O.Smith, R.I.L. 2001. Lichens of Antarctica and South Georgia: a guide to their identification and ecology. Cambridge: Cambridge University Press, 411 pp.Google Scholar
Posada, D.Crandall, K.A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics, 14, 817818.CrossRefGoogle ScholarPubMed
Printzen, C. 2008. Uncharted terrain: the phylogeography of arctic and boreal lichens. Plant Ecology and Diversity, 1, 265271.CrossRefGoogle Scholar
Printzen, C.Ekman, S. 2002. Genetic variability and its geographical distribution in the widely disjunct Cavernularia hultenii. The Lichenologist, 34, 101111.CrossRefGoogle Scholar
Printzen, C.Lumbsch, H.T. 2000. Molecular evidence for the diversification of extant lichens in the late Cretaceous and Tertiary. Molecular Phylogenetics and Evolution, 17, 379387.CrossRefGoogle ScholarPubMed
Rehner, S.A.Samuels, G.J. 1994. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research, 98, 625634.CrossRefGoogle Scholar
Richardson, J.E., Fay, M.F., Cronk, Q.C.B.Chase, M.W. 2003. Species delimitation and the origin of populations in island representatives of Phylica (Rhamnaceae). Evolution, 57, 816827.Google ScholarPubMed
Romeike, J., Friedl, T., Helms, G.Ott, S. 2002. Genetic diversity of algal and fungal partners in four species of Umbilicaria (lichenized ascomycetes) along a transect of the Antarctic Peninsula. Molecular Biology and Evolution, 19, 12091217.CrossRefGoogle ScholarPubMed
Sancho, L.G., Schulz, F., Schroeter, B.Kappen, L. 1999. Bryophyte and lichen flora of South Bay (Livingston Island: South Shetland Islands, Antarctica). Nova Hedwigia, 68, 301337.CrossRefGoogle Scholar
Stenroos, S. 1993. Taxonomy and distribution of the lichen family Cladoniaceae in the Antarctic and peri-Antarctic regions. Cryptogamic Botany, 3, 310344.Google Scholar
Stenroos, S., Hyv Nen, J., Myllys, L., Thell, A.Ahti, T. 2002. Phylogeny of the Genus Cladonia s.lat. (Cladoniaceae, Ascomycetes) inferred from molecular, morphological, and chemical data. Cladistics, 18, 237278.CrossRefGoogle ScholarPubMed
Swofford, D.L. 2002. PAUP*: phylogenetic analysis using parsimony (and other methods). Version 4. Sunderland, MA: Sinauer Associates (CD ROM).Google Scholar
Vilgalys, R.Hester, M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology, 172, 42384246.CrossRefGoogle ScholarPubMed
White, T.J., Bruns, T.D., Lee, S.B.Taylor, J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J., eds. PCR protocols: a guide to methods and applications. San Diego, CA: Academic Press, 315322.Google Scholar
Wirtz, N., Printzen, C.Lumbsch, H.T. 2008. The delimitation of Antarctic and bipolar species of neuropogonoid Usnea (Ascomycota, Lecanorales): a cohesion approach of species recognition for the Usnea perpusilla complex. Mycological Research, 112, 472484.CrossRefGoogle ScholarPubMed
Zoller, S., Lutzoni, F.Scheidegger, C. 1999. Genetic variation within and among populations of the threatened lichen Lobaria pulmonaria in Switzerland and implications for its conservation. Molecular Ecology, 8, 20492059.CrossRefGoogle ScholarPubMed
Supplementary material: File

Park Supplementary Material

Figures & Table.doc

Download Park Supplementary Material(File)
File 385 KB