Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T19:14:38.121Z Has data issue: false hasContentIssue false

Relative palaeointensity and reservoir effect on Lake Esmeralda, Antarctica

Published online by Cambridge University Press:  15 March 2017

M.A. Irurzun*
Affiliation:
Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN) – UNCPBA – CONICET – CICPBA, Pinto 399, (7000) Tandil, Argentina
M.A.E. Chaparro
Affiliation:
Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN) – UNCPBA – CONICET – CICPBA, Pinto 399, (7000) Tandil, Argentina
A.M. Sinito
Affiliation:
Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN) – UNCPBA – CONICET – CICPBA, Pinto 399, (7000) Tandil, Argentina
C.S.G. Gogorza
Affiliation:
Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN) – UNCPBA – CONICET – CICPBA, Pinto 399, (7000) Tandil, Argentina
H. Nuñez
Affiliation:
Instituto Antártico Argentino, Cerrito 1248, (1010) Buenos Aires, Argentina
N.R. Nowaczyk
Affiliation:
GeoForschungsZentrum Potsdam, Section 3.3, Telegrafenberg, D-14473 Potsdam, Germany
H.N. Böhnel
Affiliation:
Centro de Geociencias-UNAM, Boulevard Juriquilla No. 3001, (76230) Querétaro, México

Abstract

Four cores from the bottom sediments of Lake Esmeralda, Vega Island, Antarctica (60°48'S, 57°37'W) were studied. Analysis of rock magnetics indicates that the main carriers of magnetization are ferrimagnetic minerals, predominantly pseudo-single-domain (titano-) magnetite with a small proportion of paramagnetic and antiferromagnetic minerals. The magnetic grain size of the samples is in the range of 1–5 μm and the variation of the interparametric ratios is less than one order of magnitude. Demagnetization of the natural remanent magnetization shows a stable remanent magnetization in most of the samples. Thus, the samples fulfil the necessary conditions to calculate relative palaeointensity (RPI) and the curves obtained correlated with global models enabling dating of the cores. The 250 cm of sediment recovered spans the last 10 200 yr bp. Finally, some samples with high organic matter content were dated by accelerator mass spectrometry 14C. By comparison with the age defined by the RPI curves, a reservoir effect of c. 5200 years is suggested for this region of Vega Island.

Type
Earth Sciences
Copyright
© Antarctic Science Ltd 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, J.T., Domack, E.W., Cunningham, W.L., Leventer, A., Licht, K.J., Jull, A.J.T., DeMaster, D.J. & Jennings, A.E. 1999. Problems and possible solutions concerning radiocarbon dating of surface marine sediments, Ross Sea, Antarctica. Quaternary Research, 52, 206216.Google Scholar
Bentley, M.J., Hodgson, D.A., Smith, J.A., Cofaigh, C.Ó, Domack, E.W., Larter, R.D., Roberts, S.J., Brachfeld, S., Leventer, A., Hjort, C., Hillenbrand, C.-D. & Evans, J. 2009. Mechanisms of Holocene palaeoenvironmental change in the Antarctic Peninsula region. Holocene, 19, 5169.Google Scholar
Berkman, P.A., Andrews, J.T., Björck, S., Colhoun, E.A., Emslie, S.D., Goodwin, I.D., Hall, B.L., Hart, C.P., Hirakawa, K., Igarashi, A., Ingolfsson, O., Lopez-Martinez, J., Lyons, W.B., Mabin, M.C.G., Quilty, P.G., Taviani, M. & Yoshida, Y. 1998. Circum-Antarctic coastal environmental shifts during the Late Quaternary reflected by emerged marine deposits. Antarctic Science, 10, 345362.CrossRefGoogle Scholar
Björck, S., Håkansson, H., Olsson, S., Barnekow, L. & Janssens, J. 1993. Palaeoclimatic studies in South Shetland Islands, Antarctica, based on numerous stratigraphic variables in lake sediments. Journal of Paleolimnology, 8, 233272.CrossRefGoogle Scholar
Björck, S., Olsson, S., EllisEvans, C., Hakansson, H., Humlum, O. & deLirio, J.M. 1996. Late Holocene palaeoclimatic records from lake sediments on James Ross Island, Antarctica. Palaeogeography Palaeoclimatology Palaeoecology, 121, 195220.Google Scholar
Brachfeld, S., Acton, G.D., Guyodo, Y. & Banerjee, S.K. 2000. High-resolution paleomagnetic records from Holocene sediments from the Palmer Deep, western Antarctic Peninsula. Earth and Planetary Science Letters, 181, 3, 429441.Google Scholar
Brachfeld, S.A. 2006. High-field magnetic susceptibility (χHF) as a proxy of biogenic sedimentation along the Antarctic Peninsula. Physics of the Earth and Planetary Interiors, 156, 274282.CrossRefGoogle Scholar
Brown, M.C., Donadini, F., Nilsson, A., Panovska, S., Frank, U., Korhonen, K., Schuberth, M., Korte, M. & Constable, C.G. 2015. GEOMAGIA50.v3: 2. A new paleomagnetic database for lake and marine sediments, Earth Planets and Space, 67, 10.1186/s40623-015-0233-z.Google Scholar
Chaparro, M.A.E., Gargiulo, J.D., Irurzun, M.A., Chaparro, M.A.E., Lecomte, K.L., Böhnel, H.N., Córdoba, F.E., Vignoni, P.A., Manograsso Czalbowski, N.T., Lirio, J.M., Nowaczyk, N.R. & Sinito, A.M. 2014. El uso de parámetros magnéticos en estudios paleolimnológicos en Antártida. Latin American Journal of Sedimentology and Basin Analysis, 21, 7796.Google Scholar
Domack, E. 2002. A synthesis for site 1098: Palmer Deep. In Barker, P.F., Camerlenghi, A., Acton, G.D. & Ramsay, A.T.S., eds. Proceedings of the ocean drilling program, scientific results. College Station, TX: Ocean Drilling Program, Texas A&M University.Google Scholar
Domack, E., Leventer, A., Dunbar, R., Taylor, F., Brachfeld, S., Sjunneskog, C., Cowan, E., Daniels, J.W., Escutia, C., Evans, A., Eyles, N., Guyodo, Y., Ioio, M., Iwai, M., Kyte, F., Lauer, C., Maldonado, A., Morez, T., Osterman, L., Pudsey, C., Schuffert, J., Vigar, K., Weinheimer, A., Williams, T., Winter, D. & Wolf-Welling, T.C.W. 2001. Chronology of the Palmer Deep site, Antarctic Peninsula: a Holocene palaeoenvironmental reference for the circum-Antarctic. Holocene, 11, 19.Google Scholar
Dunlop, D.J. 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc). 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research - Solid Earth, 107, 10.1029/2001JB000486.Google Scholar
Faegri, K. & Iversen, J. 1989. Textbook of pollen analysis, 4th edition. New York, NY: Wiley, 304 pp.Google Scholar
Gogorza, C.S.G., Irurzun, M.A., Sinito, A.M., Lisé-Pronovost, A., St-Onge, G., Haberzettl, T., Ohlendorf, C., Kastner, S. & Zolitschka, B. 2012. High-resolution paleomagnetic records from Laguna Potrok Aike (Patagonia, Argentina) for the last 16,000 years. Geochemistry Geophysics Geosystems, 13, 10.1029/2011GC003900.CrossRefGoogle Scholar
Hall, B.L. & Henderson, G.M. 2001. Use of uranium-thorium dating to determine past 14C reservoir effects in lakes: examples from Antarctica. Earth and Planetary Science Letters, 193, 565577.Google Scholar
Hendy, C.H. & Hall, B.L. 2006. The radiocarbon reservoir effect in proglacial lakes: examples from Antarctica. Earth and Planetary Science Letters, 241, 413421.Google Scholar
Ingolfsson, O., Hjort, C., Berkman, P.A., Bjorck, S., Colhouns, E., Goodwin, I.D., Hall, B., Hirakawa, K., Melles, M., Moller, P. & Prentice, M.L. 1998. Antarctic glacial history since the Last Glacial Maximum: an overview of the record on land. Antarctic Science, 10, 326344.CrossRefGoogle Scholar
Irurzun, M.A., González Bonorino, G., Gogorza, C.S.G., Hall, S., del valle Abascal, L., Alonso, R.N. & Larcher, N. 2014. Caracterización magnética y datación preliminar mediante paleointensidades relativas de sedimentos lacustres de la Formación Tajamar (Guachipas), Salta Argentina. Latinmag Letters, 4, 118.Google Scholar
Irurzun, M.A., Gogorza, C.S.G., Torcida, S., Lirio, J.M., Nuñez, H., Bercoff, P.G., Chaparro, M.A.E. & Sinito, A.M. 2009. Rock magnetic properties and relative paleointensity stack between 13 and 24 kyr bp calibrated ages from sediment cores, Lake Moreno (Patagonia, Argentina). Physics of the Earth and Planetary Interiors, 172, 157168.Google Scholar
Kirschvink, J.L. 1980. The least squares line and plane and the analysis of paleomagnetic data. Geophysical Journal of the Royal Astronomical Society, 62, 699718.Google Scholar
Kliem, P., Enters, D., Hahn, A., Ohlendorf, C., Lisé-Pronovost, A., St-Onge, G., Wastegård, S., Zolitschka, B. & PASADO science team. 2013. Lithology, radiocarbon chronology and sedimentological interpretation of the lacustrine record from Laguna Potrok Aike, southern Patagonia. Quaternary Science Reviews, 71, 5469.CrossRefGoogle Scholar
Kokfelt, U. & Muscheler, R. 2012. Solar forcing of climate during the last millennium recorded in lake sediments from northern Sweden. Holocene, 23, 447452.CrossRefGoogle Scholar
Lirio, J.M., Chaparro, A., Yermolin, E., Silva Busso, A. & Brizuela, M. 2007. Carecterísticas batimétricas de las Lagunas Esmeralda y Pan Negro, Cabo Lamb, Isla Vega, Antártida. VI Simposio Argentino y III Latinoamericano Sobre Investigaciones Antárticas. Buenos Aires: Dirección Nacional del Antártico/Instituto Antártico Argentino.Google Scholar
Lisé-Pronovost, A., St-Onge, G., Gogorza, C., Jouve, G., Francus, P., Zolitschka, B. & PASADO science team. 2014. Rock-magnetic signature of precipitation and extreme runoff events in south-eastern Patagonia since 51 200 cal bp from the sediment of Laguna Potrok Aike. Quaternary Science Reviews, 98, 110125.Google Scholar
Moreno Merino, L., Silva-Buso, A., Ermolin, E., Durán Valsero, J.J., López-Martínez, J., Martínez Navarrete, C. & Cuchí Oterino, J.A. 2012. Caracterización de solutos inorgánicos lixiviables en los Gelisoles del Cabo Lamb, Isla Vega (Península Antártica). Geogaceta, 51, 4750.Google Scholar
Phartiyal, B. 2014. Holocene paleoclimatic variation in the Schirmacher Oasis, East Antarctica: a mineral magnetic approach. Polar Science, 8, 357369.Google Scholar
Ramsey, C.B. 2001. Development of the radiocarbon calibration program. Radiocarbon, 43, 355363.Google Scholar
Ramsey, C.B. 2008. Deposition models for chronological records. Quaternary Science Reviews, 27, 4260.Google Scholar
Shen, C., Liu, T., Yi, W.X., Sun, Y.M., Jiang, M.T., Beer, J. & Bonani, G. 1998. 14C dating of terrestrial moss in Tern Lake deposits, Antarctica. Radiocarbon, 40, 849854.CrossRefGoogle Scholar
Steig, E.J., Morse, D.L., Waddington, E.D., Stuiver, M., Grootes, P.M., Mayewski, P.A., Twickler, M.S. & Whitlow, S.I. 2000. Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica. Geografiska Annaler - Physical Geography, 82A, 213235.Google Scholar
Stoner, J.S., Channell, J.E.T., Hodell, D.A. & Charles, C.D. 2003. A ~580 kyr paleomagnetic record from the sub-Antarctic South Atlantic (Ocean Drilling Program Site 1089). Journal of Geophysical Research - Solid Earth, 108, 10.1029/2001JB001390.Google Scholar
Strother, S.L., Salzmann, U., Roberts, S.J., Hodgson, D.A., Woodward, J., van Nieuwenhuyze, W., Verleyen, E., Vyverman, W. & Moreton, S.G. 2015. Changes in Holocene climate and the intensity of Southern Hemisphere Westerly Winds based on a high-resolution palynological record from sub-Antarctic South Georgia. Holocene, 25, 263279.CrossRefGoogle Scholar
Tauxe, L. 1998. Paleomagnetic principles and practice. Dordrecht: Kluwer Academic Publishers, 299 pp.Google Scholar
Turner, G.M. 1997. Environmental magnetism and magnetic correlation of high resolution lake sediment records from northern Hawke’s Bay, New Zealand. New Zealand Journal of Geology and Geophysics, 40, 287298.Google Scholar
Wagner, B., Ortlepp, S., Doran, P.T., Kenig, F., Melles, M. & Burkemper, A. 2011. The Holocene environmental history of Lake Hoare, Taylor Valley, Antarctica, reconstructed from sediment cores. Antarctic Science, 23, 307319.Google Scholar
Warrier, A.K., Mahesha, B.S., Mohana, R., Shankar, R., Asthana, R. & Ravindra, R. 2014. Glacial–interglacial climatic variations at the Schirmacher Oasis, East Antarctica: the first report from environmental magnetism. Palaeogeography Palaeoclimatology Palaeoecology, 412, 249260.Google Scholar
Willmott, V., Domack, E.W., Canals, M. & Brachfeld, S. 2006. A high resolution relative paleointensity record from the Gerlache-Boyd paleo-ice stream region, northern Antarctic Peninsula. Quaternary Research, 66, 111.Google Scholar