Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T05:07:10.624Z Has data issue: false hasContentIssue false

Taxonomy 2.0: computer-aided identification tools to assist Antarctic biologists in the field and in the laboratory

Published online by Cambridge University Press:  09 October 2020

Thomas Saucède*
Affiliation:
Biogéosciences, UMR 6282, CNRS, EPHE, Université Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000Dijon, France
Marc Eléaume
Affiliation:
Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, 75005Paris, France
Quentin Jossart
Affiliation:
Marine Biology Lab, CP160/15 Université Libre de Bruxelles (ULB) 50, Av. F.D. Roosevelt, B-1050Brussels, Belgium
Camille Moreau
Affiliation:
Biogéosciences, UMR 6282, CNRS, EPHE, Université Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000Dijon, France Marine Biology Lab, CP160/15 Université Libre de Bruxelles (ULB) 50, Av. F.D. Roosevelt, B-1050Brussels, Belgium
Rachel Downey
Affiliation:
Fenner School of Environment & Society, Australian National University, Linnaeus Way, Acton 2601, Canberra, ACT, Australia
Narissa Bax
Affiliation:
Institute for Marine and Antarctic Studies, University of Tasmania & Centre for Marine Socioecology, Hobart, TAS, Australia
Chester Sands
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, CambridgeCB3 0ET, UK
Borja Mercado
Affiliation:
Biodiversity and Cnidarians Evolution Group, Cavanilles Institute of Biodiversity and Evolutionary Biology (ICBiBE), University of Valencia, 22085, 46071Valencia, Spain
Cyril Gallut
Affiliation:
Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, 75005Paris, France
Régine Vignes-Lebbe
Affiliation:
Institut de Systématique, Evolution, Biodiversité (ISYEB UMR 7205), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, 75005Paris, France

Abstract

Species inventories are essential to the implementation of conservation policies to mitigate biodiversity loss and maintain ecosystem services and their value to the society. This is particularly topical with respect to climate change and direct anthropogenic effects on Antarctic biodiversity, with the identification of the most at-risk taxa and geographical areas becoming a priority. Identification tools are often neglected and considered helpful only for taxonomists. However, the development of new online information technologies and computer-aided identification tools provides an opportunity to promote them to a wider audience, especially considering the emerging generation of scientists who apply an integrative approach to taxonomy. This paper aims to clarify essential concepts and provide convenient and accessible tools, tips and suggested systems to use and develop knowledge bases (KBs). The software Xper3 was selected as an example of a user-friendly KB management system to give a general overview of existing tools and functionalities through two applications: the ‘Antarctic Echinoids’ and ‘Odontasteridae Southern Ocean (Asteroids)’ KBs. We highlight the advantages provided by KBs over more classical tools, and future potential uses are highlighted, including the production of field guides to aid in the compilation of species inventories for biodiversity conservation purposes.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, E.L., Froneman, P.W., Durgadoo, J.V., McQuaid, C.D., Ansorge, I.J. & Richoux, N.B. 2013. Critical indirect effects of climate change on sub-Antarctic ecosystem functioning. Ecology and Evolution, 3, 10.1002/ece3.678.Google Scholar
Balmford, A. & Gaston, K.J. 1999. Why biodiversity surveys are good value. Nature, 398, 204205.CrossRefGoogle Scholar
Barnes, D.K.A. 2007. Benthic communities in the Southern Ocean. In Riffenburgh, B., ed. Encyclopedia of the Antarctic. New York: Routledge, 142144.Google Scholar
Bartlett, J.C., Convey, P., Pertierra, L.R. & Hayward, S.A. 2020. An insect invasion of Antarctica: the past, present and future distribution of Eretmoptera murphyi (Diptera, Chironomidae) on Signy Island. Insect Conservation and Diversity, 13, 10.1111/icad.12389.CrossRefGoogle Scholar
Brandt, A., Gooday, A.J., Brandao, S.N., Brix, S., Brokeland, W., Cedhagen, T., et al. 2007. First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature, 447, 307311.CrossRefGoogle ScholarPubMed
Brueggeman, P. 1998. Underwater field guide to Ross Island & McMurdo Sound, Antarctica. San Diego, CA: The National Science Foundation's Office of Polar Programs. Available at http://www.peterbrueggeman.com/nsf/fguide/Google Scholar
Bueno, G., Deniz, O., Pedraza, A., Ruiz-Santaquiteria, J., Salido, J., Cristóbal, G., et al. 2017. Automated diatom classification (part A): handcrafted feature approaches. Applied Sciences, 7, 10.3390/app7080753.CrossRefGoogle Scholar
Byrne, M., Gall, M., Wolfe, K. & Agüera, A. 2016. From pole to pole: the potential for the Arctic seastar Asterias amurensis to invade a warming Southern Ocean. Global Change Biology, 22, 10.1111/gcb.13304.CrossRefGoogle ScholarPubMed
Carvalho, F.A., Filer, D. & Renner, S.S. 2014. Taxonomy in the electronic age and an e-monograph of the papaya family (Caricaceae) as an example. Cladistics, 31, 10.1111/cla.12095.Google Scholar
Cary, S.C., McDonald, I.R., Barrett, J.E. & Cowan, D.A. 2010. On the rocks: the microbiology of Antarctic Dry Valley soils. Nature Reviews Microbiology, 8, 129138.CrossRefGoogle ScholarPubMed
CCAMLR. 2009. Conservation measure 91-03. Protection of the South Orkney Islands southern shelf. Hobart: CCAMLR.Google Scholar
Chapman, A.D. 2005. Uses of Primary Species-Occurrence Data, version 1.0. Report for the Global Biodiversity Information Facility. Available at http://www.gbif.org/document/80545.Google Scholar
Chavan, V. & Penev, L. 2011. The data paper: a mechanism to incentivize data publishing in biodiversity science. BMC Bioinformatics, 12, S2.CrossRefGoogle ScholarPubMed
Clark, A. M. & Downey, M.E. 1992. Starfishes of the Atlantic. London: Chapman & Hall, 820 pp.Google Scholar
Clarke, A. & Johnston, N.M. 2003. Antarctic marine benthic diversity. Oceanography and Marine Biology, 41, 47114.Google Scholar
Conruyt, N., Grosser, D., Faure, G., Pichon, M., Geynet, Y., Guillaume, M., et al. 1998. IKBS: an iterative knowledge base system for managing knowledge in remote systematics. Application to corals of the Mascarene Archipelago. Perpignan: International Society for Reef Studies (ISRS) European Meeting.Google Scholar
Costello, M.J., Vanhoorne, B. & Appeltans, W. 2015. Conservation of biodiversity through taxonomy, data publication, and collaborative infrastructures. Conservation Biology, 29, 10.1111/cobi.12496.CrossRefGoogle ScholarPubMed
Dallwitz, M.J. 1980. A general system for coding taxonomic descriptions. Taxon, 29, 4146.CrossRefGoogle Scholar
Dallwitz, M.J. 2000. A comparison of interactive identification programs. Available at https://www.delta-intkey.com.Google Scholar
Danis, B., van de Putte, A., Renaudier, S. & Griffiths, H. 2013. Connecting biodiversity data during the IPY: the path towards e-polar science. In Verde, C. & di Prisco, G., eds. Adaptation and evolution in marine environments 2. Berlin: Springer, 2132.CrossRefGoogle Scholar
David, B., Choné, T., Mooi, R. & de Ridder, C. 2005a. Antarctic Echinoidea. Synopses of the Antarctic benthos. Königstein: Koeltz Scientific Books, 274 pp.Google Scholar
David, B., Choné, T., Festeau, A., Mooi, R. & de Ridder, C. 2005b. Biodiversity of Antarctic echinoids: a comprehensive and interactive database. Scientia Marina, 69, 201203.CrossRefGoogle Scholar
David, B., Saucède, T., Chenuil, A., Steimetz, A. & de Ridder, C. 2016. The taxonomic challenge posed by the Antarctic echinoids Abatus bidens and Abatus cavernosus (Schizasteridae, Echinoidea). Polar Biology, 39, 10.1007/s00300-015-1842-5.CrossRefGoogle Scholar
De Broyer, C. & Danis, B. 2011. How many species in the Southern Ocean? Towards a dynamic inventory of the Antarctic marine species. Deep-Sea Research II, 58, 517.CrossRefGoogle Scholar
De Broyer, C., Koubbi, P., Griffiths, H.J., Raymond, B., Udekem d'Acoz, C. d', van de Putte, A.P., et al. 2014. Biogeographic atlas of the Southern Ocean. Cambridge: Scientific Committee on Antarctic Research, xii + 498 pp.Google Scholar
Díaz, A., Féral, J.-P., David, B., Saucède, T. & Poulin, E. 2011. Evolutionary pathways among shallow and deep-sea echinoids of the genus Sterechinus in the Southern Ocean. Deep-Sea Research II, 58, 10.1016/j.dsr2.2010.10.012.Google Scholar
Dillen, M., Groom, Q., Chagnoux, S., Güntsch, A., Hardisty, A., Haston, E., et al. 2019. A benchmark dataset of herbarium specimen images with label data. Biodiversity Data Journal, 7, 10.3897/BDJ.7.e31817.CrossRefGoogle Scholar
Engel, J., Brousseau, L. & Baraloto, C. 2016. GuiaTreeKey, a multi-access electronic key to identify tree genera in French Guiana. PhytoKeys, 68, 10.3897/phytokeys.68.8707.CrossRefGoogle Scholar
Fabri-Ruiz, S., Saucède, T., Danis, B. & David, B. 2017. Southern Ocean echinoids database - an updated version of Antarctic, sub-Antarctic and cold temperate echinoid database. ZooKeys, 697, 120.CrossRefGoogle Scholar
Féral, J.-P., Poulin, E., de Ridder, C. & Saucède, T. 2019. A field guide to coastal echinoderms of the Kerguelen Islands. Zoosymposia, 15, 10.11646/zoosymposia.15.1.6.CrossRefGoogle Scholar
Fischer, W.K. & Hureau, J.-C. 1985. FAO species identification sheets for fishery purposes Southern Ocean: fishing Areas 48, 58 and 88 (CCAMLR Convention Area). Rome: FAO, 470 pp.Google Scholar
Fisher, W.K. 1940. Asteroidea. Discovery Reports, 20, 69306.Google Scholar
Forget, P.-M, Lebbe, J., Puig, H., Vignes, R., Hideux, F.L.S. & Hibeux, M. 1986. Microcomputer aided identification: an application to trees from French Guiana. Botanical Journal of the Linnean Society, 93, 10.1111/j.1095-8339.1986.tb01021.x.CrossRefGoogle Scholar
Fraser, C.I., Morrison, A.K., Hogg, A.M., Macaya, E.C., van Sebille, E., Ryan, P.G., et al. 2018. Antarctica's ecological isolation will be broken by storm-driven dispersal and warming. Nature Climate Change, 8, 704.CrossRefGoogle Scholar
Gaston, K.J. 2005. Biodiversity and extinction: species and people. Progress in Physical Geography, 29, 239247.CrossRefGoogle Scholar
Gorsky, G., Ohman, M.D., Picheral, M., Gasparini, S., Stemmann, L., Romagnan, J.B., et al. 2010. Digital zooplankton image analysis using the ZooScan integrated system. Journal of Plankton Research March, 32, 285303.CrossRefGoogle Scholar
Griffiths, H.J. 2010. Antarctic marine biodiversity - what do we know about the distribution of life in the Southern Ocean? PLoS One, 5, 10.1371/journal.pone.0011683.CrossRefGoogle ScholarPubMed
Griffiths, H.J., Danis, B. & Clarke, A. 2011. Quantifying Antarctic marine biodiversity: the SCAR-MarBIN data portal. Deep-Sea Research II, 58, 10.1016/j.dsr2.2010.10.008Google Scholar
Gutt, J., Barnes, D.K.A., Lockhart, S. & van de Putte, A. 2013. Antarctic macrobenthic communities: a compilation of circumpolar information. Nature Conservation, 4, 10.3897/natureconservation.4.4499.CrossRefGoogle Scholar
Gutt, J., Barratt, I., Domack, E., d'Udekem d'Acoz, C., Dimmler, W., Grémare, A., et al. 2011. Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep-Sea Research II, 58, 7483.CrossRefGoogle Scholar
Gutt, J., Bertler, N., Bracegirdle, T.J., Buschmann, A., Comiso, J., Hosie, G., et al. 2015. The Southern Ocean ecosystem under multiple climate change stresses? An integrated circumpolar assessment. Global Change Biology, 21, 14341453.CrossRefGoogle ScholarPubMed
Gutt, J., Isla, E., Bertler, A.N., Bodeker, G.E., Bracegirdle, T., Cavanagh, R.D., et al. 2017. Cross-disciplinarity in the advance of Antarctic ecosystem research. Marine Genomics, 37, 117.CrossRefGoogle ScholarPubMed
Hagedorn, G., Rambold, G. & Martellos, S. 2010. Types of identification keys. In Nimis, P.L. & Vignes-Lebbe, R., eds. Tools for identifying biodiversity: progress and problems. Proceedings of the International Congress, Paris, September 20–22, 2010. Trieste: EUT Edizioni Università di Trieste, 5964.Google Scholar
Hardy, C., David, B., Rigaud, T., de Ridder, C. & Saucède, T. 2011. Ectosymbiosis associated with cidaroids (Echinodermata: Echinoidea) promotes benthic colonization of the seafloor in the Larsen Embayments, Western Antarctica. Deep-Sea Research II, 58, 8490.CrossRefGoogle Scholar
Hibberd, T. & Moore, K. 2009. Field identification guide to Heard Island and McDonald Islands benthic invertebrates, a guide for scientific observers on board fishing vessels in that area. Kingston: The Department of Environment, Water, Heritage, and the Arts, Australian Antarctic Division and the Fisheries Research and Development Corporation, Australia, 158 pp.Google Scholar
Hu, Ji., Chen, Z., Yang, M., Zhang, R. & Cui, Y. 2018. A multiscale fusion convolutional neural network for plant leaf recognition. IEEE Signal Processing Letters, 25, 853857.CrossRefGoogle Scholar
Hughes, K.A. & Ashton, G.V. 2017. Breaking the ice: the introduction of biofouling organisms to Antarctica on vessel hulls. Aquatic Conservation: Marine and Freshwater Ecosystems, 27, 10.1002/aqc.2625.CrossRefGoogle Scholar
Janosik, A.M. & Halanych, K.M. 2010. Unrecognized Antarctic biodiversity: a case study of the genus Odontaster (Odontasteridae; Asteroidea). Integrative and Comparative Biology, 50, 981992.CrossRefGoogle Scholar
Janosik, A.M. & Halanych, K.M. 2013. Seeing stars: a molecular and morphological investigation into the evolutionary history of Odontasteridae (Asteroidea) with description of a new species from the Galapagos Islands. Marine Biology, 160, 821841.CrossRefGoogle Scholar
Janosik, A.M., Mahon, A.R. & Halanych, K.M. 2011. Evolutionary history of Southern Ocean Odontaster sea star species (Odontasteridae; Asteroidea). Polar Biology, 34, 575586.CrossRefGoogle Scholar
Joly, A., Vrochidis, S., Karatzas, K., Karppinen, A. & Bonnet, P. 2018. Multimedia tools and applications for environmental & biodiversity informatics. Cham: Springer International Publishing, 221 pp.CrossRefGoogle Scholar
Joly, A., Goëau, H., Bonnet, P., Bakic´, V., Barbe, J., Selmi, S., et al. 2014. Interactive plant identification based on social image data. Ecological Informatics, 23, 2234.CrossRefGoogle Scholar
Jossart, Q., Sands, C.J. & Sewell, M.A. 2019. Dwarf brooder versus giant broadcaster: combining genetic and reproductive data to unravel cryptic diversity in an Antarctic brittle star. Heredity, 123, 622633.CrossRefGoogle Scholar
Jossart, Q., Kochzius, M., Danid, B., Saucède, T. & Moreau, C. 2020. Diversity of the Pterasteridae (Asteroidea) in the Southern Ocean: a molecular and morphological approach. Zoological Journal of the Linnean Society, 10.1093/zoolinnean/zlaa097/5907661.CrossRefGoogle Scholar
Jossart, Q., Moreau, C., Agüera, A., de Broyer, C. & Danis, B. 2015. The Register of Antarctic Marine Species (RAMS): a ten-year appraisal. ZooKeys, 524, 137.CrossRefGoogle Scholar
Jouveau, S., Delaunay, M., Vignes-Lebbe, R. & Nattier, R. 2018. A multi-access identification key based on colour patterns in ladybirds (Coleoptera, Coccinellidae). ZooKeys, 758, 10.3897/zookeys.758.22171.CrossRefGoogle Scholar
Kaiser, S., Brandão, S.N., Brix, S., Barnes, D.K.A., Bowden, D.A., Ingels, J., et al. 2013. Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding. Marine Biology, 160, 10.1007/s00227-013-2232-6.CrossRefGoogle Scholar
Kargel, J.S., Bush, A.B.G., Cogley, J.G., Leonard, G.J., Raup, B.H., Smiraglia, C.M., et al. 2014. A world of changing glaciers: summary and climatic context. In Kargel, J.S., Leonard, G.J., Bishop, M.P., Kääb, A. & Raup, B.H., eds. Global land ice measurements from space. Berlin: Springer, 781840.CrossRefGoogle Scholar
Kennicutt, M.C., Chown, S.L., Cassano, J.J., Liggett, D., Peck, L. S., Massom, R., et al. 2015. A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond. Antarctic Science, 27, 10.1017/S0954102014000674.CrossRefGoogle Scholar
Kim, J. 2020. An analysis of data paper templates and guidelines: types of contextual information described by data journals. Science Editing, 7, 1623.CrossRefGoogle Scholar
Klimmek, F. & Baur, H. 2018. An interactive key to Central European species of the Pteromalus albipennis species group and other species of the genus (Hymenoptera: Chalcidoidea: Pteromalidae), with the description of a new species. Biodiversity Data Journal, 6, 10.3897/BDJ.6.e27722.CrossRefGoogle Scholar
Koehler, R. 1906. Note préliminaire sur les Échinodermes recueillis par l'expédition, antarctique franYaise du Dr. Charcot (Échinides, Astéries et Ophiures). Bulletin du Museum Paris, 1905, 464470.Google Scholar
Kruczek, Z., Kruczek, M. & Szromek, A. 2018. Possibilities of using the tourism area life cycle model to understand and provide sustainable solution for tourism development in the Antarctic Region. Sustainability, 10, 89.CrossRefGoogle Scholar
Kuang, Y. 2015. Deep neural network for deep sea plankton classification. Technical report. Stanford, CA: Stanford University Press, 43214327.Google Scholar
Kumar, N., Belhumeur, P., Biswas, A., Jacobs, D., Kress, W., Lopez, I., et al. 2012. Leafsnap: a computer vision system for automatic plant species identification. In Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., & Schmid, C., eds. Computer Vision - ECCV 2012. Berlin: Springer, 502516.CrossRefGoogle Scholar
Lecointre, G., Améziane, N., Boisselier, M.-C., Bonillo, C., Busson, F., Causse, R., et al. 2013. How operational is the species flock concept? The Antarctic shelf case. PLoS One, 8, 10.1371/journal.pone.0068787.CrossRefGoogle ScholarPubMed
Lee, J.E. & Chown, S.L. 2007. Mytilus on the move: transport of an invasive bivalve to the Antarctic. Marine Ecology Progress Series, 339, 307310.CrossRefGoogle Scholar
Linse, K., Walker, L.J. & Barnes, D.K. 2008. Biodiversity of echinoids and their epibionts around the Scottia Arc, Antarctica. Antarctic Science, 20, 227244.CrossRefGoogle Scholar
Mah, C.L. & Foltz, D.W. 2014. New taxa and taxonomic revisions to the Poraniidae (Valvatacea; Asteroidea) with comments on feeding biology. Zootaxa, 3795, 327372.CrossRefGoogle ScholarPubMed
Mah, C.L., Neill, K., Eléaume, M. & Foltz, D. 2014. New species and global revision of Hippasteria (Hippasterinae: Goniasteridae; Asteroidea; Echinodermata). Zoological Journal of the Linnean Society, 171, 422456.Google Scholar
Martìn-Ledo, R., López-González, P. & Sands, C.J. 2012. A new brooding species of brittle star (Echinodermata: Ophiuroidea) from Antarctic waters. Polar Biology, 36, 10.1007/s00300-012- 1242-z.Google Scholar
May, R.M. 2011. Why worry about how many species and their loss? PLoS Biology, 9, 10.1371/ journal.pbio.1001130.CrossRefGoogle ScholarPubMed
McCarthy, A.H., Peck, L.S., Hughes, K.A. & Aldridge, D.C. 2019. Antarctica: the final frontier for marine biological invasions. Global Change Biology, 25, 22212241.CrossRefGoogle ScholarPubMed
McClintock, J.B. 1994. Trophic biology of Antarctic shallow-water echinoderms. Marine Ecology Progress Series, 111, 191202.CrossRefGoogle Scholar
Molinos, J.G., Halpern, B.S., Schoeman, D.S., Brown, C.J., Kiessling, W., Moore, P.J., et al. 2015. Climate velocity and the future global redistribution of marine biodiversity. Nature Climate Change, 6, 10.1038/nclimate2769.Google Scholar
Moreau, C., Agüera, A., Jossart, Q. & Danis, B. 2015. Southern Ocean Asteroidea: a proposed update for the Register of Antarctic Marine Species. Biodiversity Data Journal, 3, 10.3897/BDJ.3.e7062.CrossRefGoogle Scholar
Moreau, C., Danis, B., Jossart, Q., Eléaume, M., Sands, C., Achaz, G., et al. 2019. Is reproductive strategy a key factor in understanding the evolutionary history of Southern Ocean Asteroidea (Echinodermata)? Ecology and Evolution, 9, 84658478.CrossRefGoogle Scholar
Moya, F., Saucède, T. & Manjón-Cabeza, M.E. 2012. Environmental control on the structure of echinoid assemblages in the Bellingshausen Sea (Antarctica). Polar Biology, 35, 10.1007/s00300-012-1176-5.CrossRefGoogle Scholar
Neubacher, D. & Rambold, G. 2005. NaviKey - a Java applet and application for accessing descriptive data coded in DELTA format. Available at http://www.navikey.net.Google Scholar
Nimis, P.L. & Vignes-Lebbe, R. 2010. Tools for identifying biodiversity: progress and problems. Proceedings of the International Congress, Paris, September 20–22. Trieste: EUT Edizioni Università di Trieste, 445 pp.Google Scholar
Pasquetto, I.V., Randles, B.M. & Borgman, C.L. 2017. On the reuse of scientific data. Data Scientific Journal, 16, 10.5334/dsj-2017-008.Google Scholar
Pellen, F., Bouquin, S., Mougenot, I. & Vignes-Lebbe, R. 2018. Building an OWL ontology with Xper3. Biodiversity Information Science and Standards, 2, 10.3897/biss.2.25614.CrossRefGoogle Scholar
Pendlebury, S.F. & Barnes-Keoghan, I.P. 2007. Climate and climate change in the sub-Antarctic. Papers and Proceedings of the Royal Society of Tasmania, 141, 10.26749/rstpp.141.1.67.Google Scholar
Pesant, S., Not, F., Picheral, M., Kandels-Lewis, S., Le Bescot, N., Gorsky, G., et al. 2015. Open science resources for the discovery and analysis of Tara Oceans data. Sciences Data, 2, 10.1038/sdata.2015.23.Google ScholarPubMed
Rauschert, M. & Arntz, W.E. 2015. Antarctic macrobenthos: a field guide of the invertebrates living at the Antarctic seafloor. Wurster Nordseekueste: Arntz & Rauschert Selbstverlag, 143 pp.Google Scholar
Sands, C.J., McInnes, S.J., Marley, N.J., Goodall-Copestake, W.P., Convey, P. & Linse, K. 2008. Phylum Tardigrada: an ‘individual’ approach. Cladistics, 24, 861871.CrossRefGoogle Scholar
Saucède, T., Pierrat, B. & David, B. 2014. Echinoids. In de Broyer, C., Koubbi, P., Griffiths, H.J., Raymond, B., Udekem d'Acoz d', C., van de Putte, A.P. et al. , eds. Biogeographic atlas of the Southern Ocean. Cambridge: Scientific Committee on Antarctic Research, 213220.Google Scholar
Saucède, T., Díaz, A., Pierrat, B., Sellanes, J., David, B., Féral, J.-P., et al. 2015a. The phylogenetic position and taxonomic status of Sterechinus bernasconiae Larrain, 1975 (Echinodermata, Echinoidea), an enigmatic Chilean sea urchin. Polar Biology, 38, 12231237.CrossRefGoogle Scholar
Saucède, T., Griffiths, H., Moreau, C., Jackson, J., Sands, C., Downey, R., et al. 2015b. East Weddell Sea echinoids from the JR275 expedition. ZooKeys, 504, 10.3897/zookeys.504.8860.Google Scholar
Schiaparelli, S., Danis, B., Wadley, V. & Stoddart, D.M. 2013. The census of Antarctic marine life: the first available baseline for Antarctic marine biodiversity. In Verde, V. & Di Prisco, G., eds. Adaptation and evolution in marine environments, vol. 2. Berlin: Springer, 319.CrossRefGoogle Scholar
Schories, D. & Kohlberg, G. 2016. Marine wildlife King George Island Antarctica: identification guide. Rostock: Dirk Schories Publications, 348 pp.Google Scholar
Schram, J.B., Schoenrock, K.M., McClintock, J.B., Amsler, C.D. & Angus, R.A. 2016. Testing Antarctic resilience: The effects of elevated seawater temperature and decreased pH on two gastropod species. ICES Journal of Marine Science, 73, 10.1093/icesjms/fsv233.CrossRefGoogle Scholar
Simier, M., Ecoutin, J. & Tito de Morais, L. 2019. The PPEAO experimental fishing dataset: fish from West African estuaries, lagoons and reservoirs. Biodiversity Data Journal, 7, 10.3897/BDJ.7.e31374.CrossRefGoogle Scholar
Tan, D.S.H., Ang, Y., Lim, G.S., Ismail, M.R.B. & Meier, R. 2010. From ‘cryptic species’ to integrative taxonomy: an iterativeprocess involving DNA sequences, morphology, and behaviour leads to the resurrection of Sepsis pyrrhosoma (Sepsidae: Diptera). Zoologica Scripta, 39, 10.1111/j.1463-6409.2009.00408.x.CrossRefGoogle Scholar
Teletchea, F. 2010. After 7 years and 1000 citations: comparative assessment of the DNA barcoding and the DNA taxonomy proposals for taxonomists and non-taxonomists. Mitochondrial DNA, 21, 206226.CrossRefGoogle ScholarPubMed
Thiele, K. & Dallwitz, M.J. 2000. A critique of Dallwitz's ‘A comparison of interactive identification programs’. Available at https://www.delta-intkey.com/www/thiele.htm.Google Scholar
Turner, J., Barrand, N., Bracegirdle, T., Convey, P., Hodgson, D.A., Jarvis, M., et al. 2014. Antarctic climate change and the environment: an update. Polar Record, 50, 10.1017/S0032247413000296.CrossRefGoogle Scholar
Ung, V., Dubus, G., Zaragüeta-Bagils, R. & Vignes-Lebbe, R. 2010. Xper2: introducing e-taxonomy. Bioinformatics, 26(5), 10.1093/bioinformatics/btp715.CrossRefGoogle ScholarPubMed
Verbitsky, J. 2013. Antarctic tourism management and regulation: the need for change. Polar Record, 49, 10.1017/S003224741200071X.CrossRefGoogle Scholar
Vignes-Lebbe, R., Chesselet, P. & Diep Thi, M.-H. 2016. Xper3: new tools for collaborating, training and transmitting knowledge on botanical phenotypes. In Rakotoarisoa, N.R., Blackmore, S. & Riera, B., eds. Botanists of the twenty-first century: roles, challenges and opportunities. Paris: UNESCO, 228239.Google Scholar
Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M., Baak, A., et al. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3, 10.1038/sdata.2016.18.CrossRefGoogle ScholarPubMed