Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T04:27:48.509Z Has data issue: false hasContentIssue false

The abundance and distribution of echinoderms in nearshore hard-bottom habitats near Anvers Island, western Antarctic Peninsula

Published online by Cambridge University Press:  26 July 2012

Brittny A. White
Affiliation:
Department of Biology, University of Alabama at Birmingham, AL 35294-1170, USA
James McClintock*
Affiliation:
Department of Biology, University of Alabama at Birmingham, AL 35294-1170, USA
Charles D. Amsler
Affiliation:
Department of Biology, University of Alabama at Birmingham, AL 35294-1170, USA
Christopher L. Mah
Affiliation:
Department of Invertebrate Zoology, National Museum of Natural History, PO Box 37012, MRC-163, Washington DC, 20013-7012, USA
Margaret O. Amsler
Affiliation:
Department of Biology, University of Alabama at Birmingham, AL 35294-1170, USA
Stephanie White
Affiliation:
Marine Science Institute, University of California at Santa Barbara, CA 93106-6150, USA
Langdon B. Quetin
Affiliation:
Marine Science Institute, University of California at Santa Barbara, CA 93106-6150, USA
Robin M. Ross
Affiliation:
Marine Science Institute, University of California at Santa Barbara, CA 93106-6150, USA
*
*corresponding author: mcclinto@uab.edu

Abstract

Echinoderms are well represented in nearshore hard-bottom (< 100 m depth) habitats along the Antarctic Peninsula where they are presumably important contributors to benthic production, carbon flow, and determinants of community structure. The present study assesses the densities of echinoderms at shallow depths (2–15 m) at five sampling sites within three kilometres of Anvers Island on the central western Antarctic Peninsula. The asteroids Odontaster validus, Granaster nutrix, Lysasterias perrieri and Adelasterias papillosa, two ophiuroids in the Amphiuridae, the holothuroids Psolicrux coatsi and Psolus carolineae and one representative of the Cucumaridae, and the regular echinoid Sterechinus neumayeri were enumerated. Mean total echinoderm densities were high (34.9 individuals m-2) and ranged from 21.9 individuals m-2 for asteroids to 2.7 individuals m-2 for holothuroids. With the exception of a positive relationship between the abundance of the regular echinoid Sterechinus neumayeri and the biomass of the brown alga Himanthothallus grandifolius, no significant relationships were found between the abundance of asteroids, ophiuroids, or holothuroids and two species of brown algae or three algal ecotypes. The present study indicates nearshore hard-bottom echinoderms are important in the carbon cycle and their inherent vulnerability to ocean acidification may have community-level impacts.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amsler, C.D., McClintock, J.B.Baker, B.J. 1998. Chemical defense against herbivory in the Antarctic marine macroalgae Iridaea cordata and Phyllophora antarctica. Journal of Phycology, 34, 5359.CrossRefGoogle Scholar
Amsler, C.D., Moeller, C.B., McClintock, J.B., Iken, K.B.Baker, B.J. 2000. Chemical defenses against diatom fouling in Antarctic marine sponges. Biofouling, 16, 2945.CrossRefGoogle Scholar
Amsler, C.D., Rowly, R.J., Laur, D.R., Quetin, L.B.Ross, R.M. 1995. Vertical distribution of Antarctic peninsular macroalgae: cover, biomass, and species composition. Phycologia, 34, 424430.CrossRefGoogle Scholar
Amsler, C.D., Iken, K.B., McClintock, J.B., Amlser, M.O., Peters, K.J., Hubbard, J.M., Furrow, F.B.Baker, B.J. 2005. A comprehensive evaluation of the palatability and chemical defenses of subtidal macroalgae from the Antarctic Peninsula. Marine Ecology Progress Series, 294, 141159.CrossRefGoogle Scholar
Arntz, W.E., Brey, T.Gallardo, V.A. 1994. Antarctic zoobenthos. Advances in Marine Biology, 32, 241304.Google Scholar
Arntz, W.E., Gutt, J.Klages, M. 1997. Antarctic marine biodiversity: an overview. In Battaglia, B., Valencia, J. & Walton, D.W.H., eds. Antarctic communities: species, structure and survival. Cambridge: Cambridge University Press, 314.Google Scholar
Barnes, D.K.A.Brockington, S. 2003. Zoobenthic biodiversity, biomass and abundance at Adelaide Island, Antarctica. Marine Ecology Progress Series, 249, 145155.CrossRefGoogle Scholar
Beddingfield, S.D.McClintock, J.B. 2000. Demographic characteristics of Lytechinus variegatus (Echinoidea: Echinodermata) from three habitats in a north Florida Bay, Gulf of Mexico. Marine Ecology, 21, 1740.CrossRefGoogle Scholar
Bischoff, W., MacKenzie, F.Bishop, F. 1987. Stabilities of synthetic magnesium calcites in aqueous solution: comparison with biogenic materials. Geochimica et Cosmochimica Acta, 51, 14131423.CrossRefGoogle Scholar
Brand, T.E. 1976. Trophic relationships of selected benthic marine invertebrates and foraminifera in Antarctica. Antarctic Journal of the United States, 11(1), 2426.Google Scholar
Brey, T., Pearse, J., Basch, L., McClintock, J.B.Slattery, M. 1995. Growth and production of Sterechinus neumayeri (Echinoidea: Echinodermata) in McMurdo Sound. Marine Biology, 124, 279292.CrossRefGoogle Scholar
Cattaneo-Vietti, R., Chiantore, M., Gamio, M.C., Albertelli, G., Cormaci, M.Di Geronimo, I. 2000. Spatial and vertical distribution of benthic littoral communities in Terra Nova Bay. In Faranda, F.M., Guglielmo, L. & Ionora, A., eds. Ross Sea ecology. Berlin: Springer, 503514.CrossRefGoogle Scholar
Clarke, A.Johnston, N.M. 2003. Antarctic marine benthic diversity. Oceanography and Marine Biology Annual Review, 41, 47114.Google Scholar
Dayton, P.K., Robilliard, G.A., Paine, R.T.Dayton, L.B. 1974. Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecological Monographs, 44, 105128.CrossRefGoogle Scholar
Dearborn, J.H. 1967. Stanford University invertebrate studies in the Ross Sea, 1958–1961: general account and station list. The fauna of the Ross Sea. Part 5. General accounts, station lists, and benthic ecology. New Zealand Department of Scientific and Industrial Research Bulletin, 176, 3147.Google Scholar
Dearborn, J.H. 1977. Food and feeding characteristics of Antarctic asteroids and ophiuroids. In Llano, G.A., ed. Adaptations within Antarctic ecosystems. Washington, DC: Smithsonian Institution, 293326.Google Scholar
Dearborn, J.H.Edwards, K.C. 1984. Analysis of data on the feeding biology of Antarctic sea-stars and brittle stars. Antarctic Journal of the United States, 19(5), 138139.Google Scholar
Dearborn, J.H.Fell, F.J. 1974. Ecology of echinoderms from the Antarctic Peninsula. Antarctic Journal of the United States, 9(6), 304305.Google Scholar
Dearborn, J.H., Allen, K.W., Hureau, J-C.Arnaud, P.M. 1972. Ecological and taxonomic studies of echinoderms, mollusks, and fishes from the Antarctic Peninsula. Antarctic Journal of the United States, 7(4), 8082.Google Scholar
Dearborn, J.H., Jordan, A.J., Fried, S.M., King, H.T.Miller, J.E. 1973. Ecological studies of echinoderms and general marine collecting along the Antarctic Peninsula. Antarctic Journal of the United States, 8(4), 206208.Google Scholar
Dell, R.K. 1972. Antarctic benthos. Advances in Marine Biology, 10, 1216.CrossRefGoogle Scholar
Fabry, V.J., McClintock, J.B., Mathis, J.Grebmeir, J. 2009. Ocean acidification at high latitudes: the bellwether. Oceanography, 22, 160171.CrossRefGoogle Scholar
Fell, H.B.Dawsey, S. 1969. Asteroidea. Antarctic Map Folio Series, 11, 4243.Google Scholar
Hyland, J., Laur, D., Jones, J., Shrake, J., Cadian, D.Harris, L. 1994. Effects of an oil spill on the soft-bottom macrofauna of Arthur Harbour, Antarctica compared with long-term natural change. Antarctic Science, 6, 3744.CrossRefGoogle Scholar
Iken, K., Konar, B., Benedetti-Cecchi, L., Cruz-Motta, J.J., Knowlton, A., Pohle, G., Mead, A., Miloslavich, P., Wong, M., Trott, T., Mieszkowska, N., Riosmena-Rodriguez, R., Airoldi, L., Kimani, E., Shirayama, Y., Fraschetti, S., Ortiz-Touzet, M.Silva, A. 2010. Large-scale spatial distribution patterns of echinoderms in nearshore rocky habitats. PLoS One, 5, e13845.CrossRefGoogle ScholarPubMed
Janosik, A.M.Halanych, K.M. 2010. Unrecognized Antarctic biodiversity: a case study of the genus Odontaster (Odontasteridae; Asteroidea). Integrative and Comparative Biology, 50, 981992.CrossRefGoogle ScholarPubMed
Lawrence, J.M. 1975. On the relationships between marine plants and sea urchins. Oceanographic Marine Biology Annual Review, 13, 213286.Google Scholar
Lawrence, J.M.Agatsuma, Y. 2007. Ecology of Tripneustes. In Lawrence, J.M., ed. Edible sea urchins: biology and ecology. Amsterdam: Elsevier, 499520.CrossRefGoogle Scholar
Lawrence, J.M.Sonnenholzner, J. 2004. Distribution and abundance of asteroids, echinoids, and holothuroids in Galapagos. In Heinzeller, T.& Nebelsick, J.H., eds. Echinoderms: München. London: Taylor & Francis Group, 239244.Google Scholar
Lebrato, M., Iglesias-Rodriguez, D., Feely, R.A., Greeley, D., Jones, D.O.B., Suarez-Bosche, N., Lampitt, R.S., Cartes, J.E., Green, D.R.H.Alker, B. 2010. Global contribution of echinoderms to the marine carbon cycle: CaCO3 budget and benthic compartments. Ecological Monographs, 80, 441467.CrossRefGoogle Scholar
McClintock, J.B. 1994. The trophic biology of Antarctic echinoderms. Marine Ecology Progress Series, 111, 191202.CrossRefGoogle Scholar
McClintock, J.B., Pearse, J.S.Bosch, I. 1988. Population structure and energetics of the hard-bottom Antarctic seastar Odontaster validus in contrasting habitats. Marine Biology, 99, 235246.CrossRefGoogle Scholar
McClintock, J.B., Amsler, M.O., Angus, R.A., Challener, R.C., Schram, J.B., Amsler, C.D., Mah, C.L., Cuce, J.Baker, B.J. 2011. The Mg-calcite composition of Antarctic echinoderms: important implications for predicting the impacts of ocean acidification. Geology, 119, 457466.Google Scholar
Pearse, J.S.Giese, A.C. 1966. Food, reproduction and organic constitution of the common Antarctic echinoid Sterechinus neumayeri (Meissner). Biological Bulletin, 130, 387401.CrossRefGoogle ScholarPubMed
Poulin, E.Feral, J-P. 1995. Pattern of spatial distribution of a brood-protecting schizasterid echinoid, Abatus cordatus, endemic to the Iles Kerguelen. Marine Ecology Progress Series, 117, 179186.CrossRefGoogle Scholar
Retamal, M.A., Quintana, R.Neira, F. 1982. Qualitative and quantitative analysis of benthic communities in Foster Bay, Deception Island (35th Chilean Antarctic Expedition, Jan 1981). Serie Cientifica Instituo Antártico Chileno, 29, 515.Google Scholar
Sáiz-Salinas, J.I., Ramos, A., Garcia, F.J., Troncoso, J.S., San Martin, G., Sanz, C.Palacin, C. 1997. Quantitative analysis of macrobenthic soft-bottom assemblages in South Shetland waters (Antarctica). Polar Biology, 17, 393400.CrossRefGoogle Scholar
Tegner, M.J. 2001. The ecology of Strongylocentrotus franciscanus and Strongylocentrotus purpuratus. Developments in Aquaculture and Fisheries Science, 32, 307–331.Google Scholar
Warner, G.F. 1971. On the ecology of a dense bed of the brittle-star Ophiothrix fragilis. Journal of the Marine Biological Association of the United Kingdom, 51, 267282.CrossRefGoogle Scholar
White, M.G. 1984. Marine benthos. In Laws, R.M., ed. Antarctic ecology, vol. 2. London, Academic Press, 421461.Google Scholar
White, S.L. 2002. Invertebrate community composition in rocky subtidal habitats of the Antarctic Peninsula. Masters thesis, University of California, Santa Barbara, 148 pp.Google Scholar