Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T07:32:22.416Z Has data issue: false hasContentIssue false

Abundance and grazing impacts of krill, salps and copepods along the 140°E meridian in the Southern Ocean during summer

Published online by Cambridge University Press:  18 March 2008

A. Tanimura*
Affiliation:
Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507Japan
S. Kawaguchi
Affiliation:
Australian Antarctic Division, Channel Highway, Kingston, TAS 7050, Australia
N. Oka
Affiliation:
Mie University, 1577 Kurimamachiya, Tsu, Mie, 514-8507Japan
J. Nishikawa
Affiliation:
Ocean Research Institute, The University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639Japan
S. Toczko
Affiliation:
Ocean Research Institute, The University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639Japan
K.T. Takahashi
Affiliation:
Australian Antarctic Division, Channel Highway, Kingston, TAS 7050, Australia
M. Terazaki
Affiliation:
Ocean Research Institute, The University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639Japan
T. Odate
Affiliation:
National Institute of Polar Research, 1-9-10 Kaga, Itabashi, Tokyo 173-8515Japan
M. Fukuchi
Affiliation:
National Institute of Polar Research, 1-9-10 Kaga, Itabashi, Tokyo 173-8515Japan
G. Hosie
Affiliation:
Australian Antarctic Division, Channel Highway, Kingston, TAS 7050, Australia

Abstract

Abundance and grazing impacts of krill, salps and herbivorous copepods were investigated in Antarctic waters along the 140°E meridian, south of Australia, during the summers of 2002 and 2003. North of the Southern Boundary of the Antarctic Circumpolar Current (SB-ACC), macrozooplankton comprised species of Salpa thompsoni and large herbivorous copepods, while the area south of the SB-ACC was numerically dominated by Euphausia superba or E. crystallorophias. North of the SB-ACC, the estimate of grazing impact revealed that krill, salps and copepods, Calanoides acutus, Calanus propinquus, Rhincalanus gigas and Metridia gerlachei, are able to remove a maximum of 37% of the total phytoplankton standing stock in early to midsummer, but grazing is negligible in late summer. The high grazing impact is attributed to the relatively high zooplankton abundance and low phytoplankton abundance. South of the SB-ACC, overall daily grazing impact of the three zooplankton groups was low and did not exceed 6% of the total phytoplankton standing stock throughout the investigation period. Present results indicate that the contribution of krill, salps and copepods varies seasonally as well as regionally across the SB-ACC. It seems that the carbon transport from surface to deep water by macro- and mesozooplankton in summer in this area is relatively large north of the SB-ACC but small south of the SB-ACC.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoki, S., Rintoul, S.R., Hasumoto, H. & Kinoshita, H. 2006. Frontal positions and mixed layer evolution in seasonal ice zone along 140°E line in 2001/02. Polar Bioscience, 20, 120.Google Scholar
Atkinson, A. 1996. Subantarctic copepods in an oceanic, low chlorophyll environment: ciliate predation, food selectivity and impact on prey populations. Marine Ecology Progress Series, 130, 8596.CrossRefGoogle Scholar
Atkinson, A. & Sinclair, J.D. 2000. Zonal distribution and seasonal vertical migration of copepod assemblages in the Scotia Sea. Polar Biology, 23, 4658.CrossRefGoogle Scholar
Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. 2004. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature, 432, 100103.CrossRefGoogle ScholarPubMed
Atkinson, A., Shreeve, R.S., Pakhomov, E.A., Priddle, J., Blight, S.P. & Ward, P. 1996. Zooplankton response to a phytoplankton bloom near South Georgia, Antarctica. Marine Ecology Progress Series, 144, 195210.CrossRefGoogle Scholar
Baker, A.C., Clark, M.R. & Harris, M.J. 1973. The N.I.O. combination net (RMT 1 + 8) and further development of Rectangular Midwater Trawls. Journal of Marine Biological Association of the United Kingdom, 53, 176184.CrossRefGoogle Scholar
Boysen-Ennen, E. & Piatkowski, U. 1988. Meso- and macro-zooplankton communities in the Weddell Sea. Antarctica. Polar Biology, 9, 1735.CrossRefGoogle Scholar
Boysen-Ennen, E.Hagen, W.Hubold, G. & Piatkowski, U. 1991. Zooplankton biomass in the ice-covered Weddell Sea, Antarctica. Marine Biology, 111, 227235.CrossRefGoogle Scholar
Beaumont, K.L. & Hosie, G.W. 1997. Mesoscale distribution and abundance of four pelagic copepod species in Prydz Bay. Antarctic Science, 9, 121133.CrossRefGoogle Scholar
Burghart, S.E., Hopkins, T.L., Vargo, G.A. & Torres, J.J. 1999. Effects of a rapid receding ice edge on the abundance, age structure and feeding of three dominant calanoid copepods in the Weddell Sea, Antarctica. Polar Biology, 22, 279288.CrossRefGoogle Scholar
Casaretto, B.E. & Nemoto, T. 1986. Salps of the Southern Ocean (Australian sector) during the 1983–84 summer, with special reference to the species Salpa thompsoni, Foxton 1961. Memoirs National Institute of Polar Research Special Issue, 40, 221239.Google Scholar
Chiba, S., Ishimaru, T. & Hosie, G.W. 1999. Population structure change of Salpa thompsoni from austral mid-summer to autumn. Polar Biology, 22, 341349.CrossRefGoogle Scholar
Chiba, S.Ishimaru, T.Hosie, G.W. & Fukuchi, M. 2001. Spatio-temporal variability of zooplankton community structure off east Antarctica (90 to 160°E). Marine Ecology Progress Series, 216, 95108.CrossRefGoogle Scholar
Chiba, S., Horimoto, N., Sato, S., Yamaguchi, Y. & Ishimaru, T. 1998. Macrozooplankton distribution around the Antarctic Divergence off Wilkes Land in 1966 austral summer: with reference to high abundance of Salpa thompsoni. Proceedings NIPR Symposium Polar Biology, 11, 3350Google Scholar
Chiba, S., Hirawake, T., Horimoto, N., Sato, R., Nakajima, Y., Ushio, S., Ishimaru, T. & Yamaguchi, Y. 2000. An overview on biological/oceanographic survey by the RTV Umitaka-Maru III off Adélie Land, Antarctica in January–February, 1996. Deep-Sea Research II, 47, 25892613.CrossRefGoogle Scholar
Clarke, A. & Morris, D.J. 1983. Towards an energy budget for krill: physiology and biochemistry of Euphausia superba Dana. Polar Biology, 2, 6986.CrossRefGoogle Scholar
Conover, R.J. & Huntley, M. 1991. Copepods in ice-covered seas - distribution, adaptations to seasonally limited food, metabolism, growth patterns and life cycle strategies in polar seas. Journal of Marine Systems, 2, 141.CrossRefGoogle Scholar
Daponte, M.C., Capitanio, F.L. & Esnal, G.B. 2001. A mechanism for swarming in the tunicate Salpa thompsoni (Foxton, 1961). Antarctic Science, 13, 240245.CrossRefGoogle Scholar
Dubischar, C.D. & Bathmann, U.V. 1997. Grazing impact of copepods and salps on phytoplankton in the Atlantic sector of the Southern Ocean. Deep-Sea Research II, 44, 415433.CrossRefGoogle Scholar
Everson, I. 1984. Zooplankton. In Laws, R.M.L., ed. Antarctic ecology,vol. 2. London: Academic Press, 463490.Google Scholar
Fevolden, S.E. 1980. Krill off Bouvetøya and in the southern Weddell Sea with a description of larval stages of Euphausia crystallorophias. Sarsia, 65, 149162.CrossRefGoogle Scholar
Foxton, P. 1966. The distribution and life history of Salpa thompsoni Foxton with observations on a related species S. gerlachei Foxton. Discovery Report, 34, 1116.Google Scholar
Froneman, P.W., Pakhomov, E.A., Perissinotto, R. & McQuaid, C.D. 2000. Zooplankton structure and grazing in the Atlantic sector of the Southern Ocean in late austral summer 1993. Part 2. Biochemical zonation. Deep-Sea Research I, 47, 16871702.CrossRefGoogle Scholar
Gomi, Y., Taniguchi, A. & Fukuchi, M. 2007. Temporal and spatial variation of phytoplankton assemblage in the eastern Indian Sector of the Southern Ocean in 2001/2002. Polar Biology, 30, 817827.CrossRefGoogle Scholar
Harbison, G.R., McAlister, V.L. & Gilmer, R.W. 1986. The response of the salp, Pegea congoederata, to high levels of particulate material: starvation in the midst of plenty. Limnology and Oceanography, 31, 371382.CrossRefGoogle Scholar
Harrington, S.A. & Thomas, P.G. 1987. Observations on spawning by Euphausia crystallorophias from the waters adjacent to Enderby Land (East Antarctica) and speculations on the early ontogenetic ecology of neritic euphausiids. Polar Biology, 7, 9395.CrossRefGoogle Scholar
Hempel, G. 1985. On the biology of polar seas, particularly the Southern Ocean. In Gray, J.S. & Christiansen, M.E., eds. Marine biology of Polar Regions and effects of stress on marine organisms. Chichester: Wiley, 333.Google Scholar
Hoddell, R.J., Crossley, R., William, R. & Hosie, G.W. 2000. The distribution of Antarctic pelagic fish and larvae (CCAMLR division 58.4.1). Deep-Sea Research II, 47, 25192541.CrossRefGoogle Scholar
Holm-Hansen, O. & Huntley, M. 1984. Feeding requirements of krill in relation to food sources. Journal of Crustacean Biology, 4, 156173.Google Scholar
Hosie, G.W. 1991. Distribution and abundance of euphausiid larvae in the Prydz Bay region, Antarctica. Antarctic Science, 3, 167180.CrossRefGoogle Scholar
Hosie, G.W. 1994. The macrozooplankton communities in the Prydz bay region, Antarctica. In El-Sayed, S.Z., ed. Southern Ocean ecology: the BIOMASS perspective. Cambridge: Cambridge University Press, 93123.Google Scholar
Hosie, G.W. & Cochran, T.G. 1994. Mesoscale distribution patterns of macrozoplankton communities in Prydz Bay, Antarctica - January to February 1991. Marine Ecology Progress Series, 106, 2139.CrossRefGoogle Scholar
Hosie, G.W., Cochran, T.G., Pauly, T., Beaumont, K.L., Wright, S.W. & Kitchener, J.A. 1997. The zooplankton community structure of Prydz Bay, January–February 1993. Proceedings NIPR Symposium Polar Biology, 10, 90133.Google Scholar
Hosie, G.W., Schultz, M.B., Kitchener, J.A., Cochran, T.G. & Richards, K. 2000. Macrozooplankton community structure off east Antarctica (80–150°E) during the austral summer of 1995/1996. Deep-Sea Research II, 47, 24373463.CrossRefGoogle Scholar
Hunt, B.P.V. & Hosie, G.W. 2005. Zonal Structure of zooplankton communities in the Southern Ocean south of Australia: results from a 2150 kilometer Continuous Plankton Recorder transect. Deep-Sea Research I, 52, 12411271.CrossRefGoogle Scholar
Hunt, B.P.V. & Hosie, G.W. 2006. The seasonal succession of zooplankton in the Southern Ocean south of Australia, part I: the seasonal ice zone. Deep-Sea Research I, 53, 11821202.CrossRefGoogle Scholar
Huntley, M.E., Sykes, P.F. & Marin, V. 1989. Biometry and trophodynamics of Salpa thompsoni Foxton (Tunicata: Thaliacea) near the Antarctic Peninsula in austral summer. Polar Biology, 10, 5970.CrossRefGoogle Scholar
Huntley, M.E., Lopez, M.D.G. & Karl, D.M. 1991. Top predators in the Southern Ocean: a major leak in the biological carbon pump. Science, 353, 6466CrossRefGoogle Scholar
Ikeda, T. & Bruce, B. 1986. Metabolic activity and elemental composition of krill and other zooplankton from Prydz Bay, Antarctica, during early summer (November–December). Marine Biology, 92, 545555.CrossRefGoogle Scholar
Ikeda, T., Dixon, P. & Kirkwood, J. 1985. Laboratory observations of moulting, growth and maturation in Antarctic krill (Euphausia superba). Polar Biology, 4, 118.CrossRefGoogle Scholar
Kawaguchi, S. & Takahashi, Y. 1996. Antarctic krill (Euphausia superba Dana) eat salps. Polar Biology, 16, 479481.Google Scholar
Kawaguchi, S., de la Mare, W.K., Ichii, T. & Naganobu, M. 1998. Do krill and salps compete? Contrary evidence from the krill fisheries. CCAMLR Science, 5, 205216.Google Scholar
Kawaguchi, S., Siegel, V., Litovinov, F., Loeb, V. & Watkins, J. 2004. Salp distribution and size composition in the Atlantic sector of the Southern Ocean. Deep-Sea Research II, 51, 13691381.CrossRefGoogle Scholar
Lancelot, C., Mathot, S., Veth, C. & Barr, H. 1993. Factors controlling phytoplankton ice-edge blooms in the marginal ice-zone of the northwestern Weddell Sea during sea ice retreat 1988: field observations and mathematical modeling. Polar Biology, 13, 377387.CrossRefGoogle Scholar
Le Fèvre, J., Legendre, L. & Rivkin, R.B. 1998. Fluxes of biogenic carbon in the Southern Ocean: roles of large microphagous zooplankton. Journal of Marine Systems, 17, 325345.CrossRefGoogle Scholar
Loeb, V., Siegel, V., Holm-Hansen, O., Hewitt, R., Fraser, W., Trivelpiece, W. & Trivelpiece, S. 1997. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web. Nature, 387, 897900.CrossRefGoogle Scholar
Makarov, R.R. & Solyankin, E.V. 1990. Common copepod species and regional peculiarities of their seasonal development in the east area of the Weddell Gyre. In Solyankin, E.V., et al. Investigations of the oceanographic conditions and peculiarities of the development of plankton communities. Moscow: VNIRO, 140167.Google Scholar
Maruyama, T., Toyoda, H. & Suzuki, S. 1982. Preliminary report on the biomass of macroplankton and micronekton collected with a Bongo net during the Umitaka Maru FIBEXcruise. Transactions of Tokyo University of Fisheries, 5, 145153.Google Scholar
Mauchline, J. 1980. Measurement of body length of Euphausia superba Dana. BIOMASS Handbook, No. 4, 19.Google Scholar
Meyer, B. & Oettl, B. 2005. Effects of short-term starvation on composition and metabolism of larval Antarctic krill Euphausia superba. Marine Ecology Progress Series, 292, 263270.CrossRefGoogle Scholar
Nicol, S. 2006. Krill, currents and sea ice: Euphausia superba and its changing environment. BioScience, 56, 111120.CrossRefGoogle Scholar
Nicol, S., Kitchener, J.A., King, R., Hosie, G.W. & de la Mare, W.K. 2000a. Population structure and condition of Antarctic krill (Euphausia superba) off east Antarctica (80–150°E) during the austral summer of 1955/1966. Deep-Sea Research II, 47, 24892517.CrossRefGoogle Scholar
Nicol, S., Pauly, T., Bindoff, N.L., Wright, S., Thlele, D., Hosie, G.W., Strutton, P.G. & Woehler, E. 2000b. Ocean circulation off east Antarctica affects ecosystem structure and sea-ice extent. Nature, 406, 504507.CrossRefGoogle ScholarPubMed
Nishikawa, J. & Tsuda, A. 2001. Diel vertical migration of the tunicate Salpa thompsoni in the Southern Ocean during summer. Polar Biology, 24, 299302.CrossRefGoogle Scholar
Nishikawa, J., Naganobu, M., Ichii, T., Ishii, H., Terazaki, M. & Kawaguchi, K. 1995. Distribution of salps near the South Shetland Islands during austral summer, 1990–1991 with special reference to krill distribution. Polar Biology, 15, 3139.CrossRefGoogle Scholar
Pakhomov, E.A. 2004. Salp/krill interactions in the eastern Atlantic sector of the Southern Ocean. Deep-Sea Research II, 51, 26452660.CrossRefGoogle Scholar
Pakhomov, E.A., Grachev, D.G. & Trotsenko, B.G. 1994. Distribution and composition of macrozooplankton communities in the Lazarev Sea (Antarctic). Oceanology, 33, 635642.Google Scholar
Pakhomov, R., Froneman, P.W. & Perissinotto, E.A. 2002. Salp/krill interactions in the Southern Ocean: spatial segregation and implications for the carbon flux. Deep-Sea Research II, 49, 18811907.CrossRefGoogle Scholar
Pakhomov, E.A., Perissinotto, R. & Froneman, P.W. 1998. Abundance and trophodynamics of Euphausia crystallorophias in the shelf region of the Lazarev Sea during austral spring and summer. Journal of Marine Systems, 17, 313324.CrossRefGoogle Scholar
Pakhomov, E.A., Perissinotto, R. & Froneman, P.W. 1999. Predation impact of carnivorous macrozooplankton and micronekton in the Atlantic sector of the Southern Ocean. Journal of Marine Systems, 19, 4764.CrossRefGoogle Scholar
Pauly, T., Nicol, S., Higginbottom, I., Hosie, G. & Kitchener, J. 2000. Distribution and abundance of Antarctic krill (Euphausia superba) off east Antarctica (80–150°E) during the austral summer of 1995/1996. Deep-Sea Research II, 47, 24652488.CrossRefGoogle Scholar
Perissinotto, R. & Pakhomov, E.A. 1997. Feeding association of the copepod Rhincalanus gigas with the tunicate salp Salpa thompsoni in the southern ocean. Marine Biology, 127, 479483.CrossRefGoogle Scholar
Perissinotto, R. & Pakhomov, E.A. 1998a. Contribution of salps to carbon flux of marginal ice zone of the Lazarev Sea, Southern Ocean. Marine Biology, 131, 2532.CrossRefGoogle Scholar
Perissinotto, R. & Pakhomov, E.A. 1998b. The trophic role of the tunicate Salpa thompsoni in the Antarctic marine ecosystem. Journal of Marine Systems, 17, 361374.CrossRefGoogle Scholar
Ross, R.M., Quetin, L.B. & Haberman, K.L. 1998. Interannual and seasonal variability in short-term grazing impact of Euphausia superba in nearshore and offshore waters west of the Antarctic Peninsula. Journal of Marine Systems, 17, 261273.CrossRefGoogle Scholar
Schnack-Schiel, S.B., Hagen, W. & Mizdalski, E. 1991. Seasonal comparison of Calanoides acutus and Calanus propinquus (Copepoda: Calanoida) in the southeastern Weddell Sea, Antarctica. Marine Ecology Progress Series, 70, 1727.CrossRefGoogle Scholar
Schnack-Schiel, S.B. & Hagen, W. 1994. Life cycle strategies and seasonal variations in distribution and population structure of four dominant calanoid copepods species in the eastern Weddell Sea, Antarctica. Journal of Plankton Research, 16, 15431566.CrossRefGoogle Scholar
Schnack, S.B., Smetacek, V., Bodungen, B.V. & Stegmann, P. 1985. Utilization of phytoplankton by copepods in Antarctic waters during spring. In Gray, J.S. & Christiansen, M.E., eds. Marine biology of Polar Regions and effects of stress on marine organisms. London: Wiley, 6581.Google Scholar
Siegel, V. 1986 Untersuchungen zur Biologie des Antarktischen krill Euphausia superba, in Bereich der Bransfield Straße und angrenzender Gebiete. Mitteilungen des Instituts für Seefischerei, 38, 1244.Google Scholar
Siegel, V. & Loeb, V. 1995. Recruitment of Antarctic krill Euphausia superba and possible causes for its variability. Marine Ecology Progress Series, 123, 4556.CrossRefGoogle Scholar
Smith, S.L. & Schnack-Schiel, S.B. 1990. Polar zooplankton. In Smith, W.O., ed. Polar oceanography Part B: Chemistry, biology and geology. San Diego, CA: Academic Press, 527598.CrossRefGoogle Scholar
Sokolov, S. & Rintoul, S.R. 2002. Structure of Southern Ocean fronts at 140°E. Journal of Marine Systems, 37, 151184.CrossRefGoogle Scholar
Strutton, P.G., Griffiths, F.B., Water, R.L., Wright, S.W. & Bindoff, N.L. 2000. Primary productivity off the coast of East Antarctica (80–150°E): January to March 1996. Deep-Sea Research II, 47, 23272362.CrossRefGoogle Scholar
Thomas, P.G. & Green, K. 1988. Distribution of Euphausia crystallorophias within Prydz Bay and its importance to the inshore marine ecosystem. Polar Biology, 8, 327331.CrossRefGoogle Scholar
Thomas, P.G. & Ikeda, T. 1987. Sexual regression, shrinkage, re-maturation and growth of spent female Euphausia superba in the laboratory. Marine Biology, 95, 357363.CrossRefGoogle Scholar
Tynan, C. 1998. Ecological importance of the Southern Boundary of the Antarctic Circumpolar Current. Nature, 392, 708710.CrossRefGoogle Scholar
Voronina, N.M. 1998. Comparative abundance and distribution of major filter-feeders in the Antarctic pelagic zone. Journal of Marine Systems, 17, 375390.CrossRefGoogle Scholar