Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T07:45:36.120Z Has data issue: false hasContentIssue false

Atmospheric forcing of coastal polynyas in the south-western Weddell Sea

Published online by Cambridge University Press:  29 January 2015

Verena Haid*
Affiliation:
Alfred Wegener Institute, Climate Dynamics, Bussestrasse 24, 27570 Bremerhaven, Germany Centro Euro-Mediterraneo sui Cambiamenti Climatici, Ocean Modeling and Data Assimilation, viale Aldo Moro 44, 40127 Bologna, Italy
Ralph Timmermann
Affiliation:
Alfred Wegener Institute, Climate Dynamics, Bussestrasse 24, 27570 Bremerhaven, Germany
Lars Ebner
Affiliation:
University of Trier, Department of Environmental Meteorology, Behringstrasse 21, 54286 Trier, Germany
Günther Heinemann
Affiliation:
University of Trier, Department of Environmental Meteorology, Behringstrasse 21, 54286 Trier, Germany

Abstract

The development of coastal polynyas, areas of enhanced heat flux and sea ice production strongly depend on atmospheric conditions. In Antarctica, measurements are scarce and models are essential for the investigation of polynyas. A robust quantification of polynya exchange processes in simulations relies on a realistic representation of atmospheric conditions in the forcing dataset. The sensitivity of simulated coastal polynyas in the south-western Weddell Sea to the atmospheric forcing is investigated with the Finite-Element Sea ice-Ocean Model (FESOM) using daily NCEP/NCAR reanalysis data (NCEP), 6 hourly Global Model Europe (GME) data and two different hourly datasets from the high-resolution Consortium for Small-Scale Modelling (COSMO) model. Results are compared for April to August in 2007–09. The two coarse-scale datasets often produce the extremes of the data range, while the finer-scale forcings yield results closer to the median. The GME experiment features the strongest winds and, therefore, the greatest polynya activity, especially over the eastern continental shelf. This results in higher volume and export of High Salinity Shelf Water than in the NCEP and COSMO runs. The largest discrepancies between simulations occur for 2008, probably due to differing representations of the ENSO pattern at high southern latitudes. The results suggest that the large-scale wind field is of primary importance for polynya development.

Type
Physical Sciences
Copyright
© Antarctic Science Ltd 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldauf, M., Förstner, J., Klink, S., Reinhardt, T., Schraff, C., Seifert, A. & Stephan, K. 2011. Kurze Beschreibung des Lokal-Modells Kürzestfrist COSMO-DE (LMK) und seiner Datenbanken auf dem Datenserver des DWD. Technical report. Offenbach: Deutscher Wetterdienst, 75 pp.Google Scholar
Doms, G. & Schättler, U. 2002. A description of the nonhydrostatic regional model LM. Part I: dynamics and numerics. Technical report. Offenbach: Deutscher Wetterdienst, 134 pp.Google Scholar
Doms, G., Förstner, J., Heise, E., Herzog, H.-J., Raschendorfer, M., Schrodin, R., Reinhardt, T. & Vogel, G. 2005. A description of the nonhydrostatic regional model LM. Part II: physical parameterization. Technical report. Offenbach: Deutscher Wetterdienst, 118 pp.Google Scholar
Doms, G., Förstner, J., Heise, E., Herzog, H.-J., Mironov, D., Raschendorfer, M., Reinhardt, T., Ritter, B., Schrodin, R., Schulz, J.-P. & Vogel, G. 2011. A description of the nonhydrostatic regional COSMO model. Part II: physical parameterization. Technical report. Offenbach: Consortium for Small-Scale Modeling, 154 pp.Google Scholar
Drucker, R., Martin, S. & Kwok, R. 2011. Sea ice production and export from coastal polynyas in the Weddell and Ross seas. Geophysical Research Letters, 38, 10.1029/2011GL048668.CrossRefGoogle Scholar
Ebner, L., Heinemann, G., Haid, V. & Timmermann, R. 2014. Katabatic winds and polynya dynamics at Coats Land, Antarctica. Antarctic Science, 26, 309326.CrossRefGoogle Scholar
Foldvik, A. & Gammelsrød, T. 1988. Notes on Southern Ocean hydrography, sea-ice and bottom water formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 67, 317.Google Scholar
Haid, V. & Timmermann, R. 2013. Simulated heat flux and sea ice production at coastal polynyas in the southwestern Weddell Sea. Journal of Geophysical Research - Oceans, 118, 26402652.Google Scholar
Hunke, E.C. & Dukowicz, J.K. 1997. An elastic-viscous-plastic model for sea ice dynamics. Journal of Physical Oceanography, 27, 18491868.Google Scholar
Hunke, E.C. & Lipscomb, W.H. 2010. CICE: the Los Alamos Sea Ice Model, documentation and software user’s manual, version 4.1. Technical report la-cc-06-012. Los Alamos, NM: Los Alamos National Laboratory, 76 pp.Google Scholar
Jackett, D.R. & McDougall, T.J. 1995. Minimal adjustment of hydrographic profiles to achieve static stability. Journal of Atmospheric and Oceanic Technology, 12, 381389.Google Scholar
Jourdain, N.C. & Gallée, H. 2011. Influence of the orographic roughness of glacier valleys across the Transantarctic Mountains in an atmospheric regional model. Climate Dynamics, 36, 10671081.Google Scholar
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R. & Joseph, D. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77, 437471.Google Scholar
König-Langlo, G. & Augstein, E. 1994. Parameterization of the downward long-wave radiation at the earth’s surface in polar regions. Meteorologische Zeitschrift, 3, 343347.Google Scholar
Kwok, R. & Comiso, J.C. 2002. Southern Ocean climate and sea ice anomalies associated with the Southern Oscillation. Journal of Climate, 15, 487501.Google Scholar
Majewski, D. & Ritter, B. 2002. Das Global-Modell GME. Promet, 27, 111122.Google Scholar
Majewski, D., Liermann, D., Prohl, P., Ritter, B., Buchhold, M., Hanisch, T., Paul, G., Wergen, W. & Baumgardner, J. 2002. The operational global icosahedral-hexagonal gridpoint model GME: description and high-resolution tests. Monthly Weather Review, 130, 319338.Google Scholar
Markus, T. 1996. The effect of the grounded tabular icebergs in front of the Berkner Island on the Weddell Sea ice drift as seen from satellite passive microwave sensors. IGARSS ’96: remote sensing for a sustainable future, 3, 10.1109/IGARSS.1996.516802 Google Scholar
Markus, T., Kottmeier, C. & Fahrbach, E. 1998. Ice formation in coastal polynyas in the Weddell Sea and their impact on oceanic salinity. Antarctic Research Series, 74, 10.1029/AR074p0273.Google Scholar
Orsi, A.H., Johnson, G.C. & Bullister, J.L. 1999. Circulation, mixing and production of Antarctic Bottom Water. Progress in Oceanography, 43, 55109.Google Scholar
Owens, W.B. & Lemke, P. 1990. Sensitivity studies with a sea ice-mixed layer pycnocline model in the Weddell Sea. Journal of Geophysical Research - Oceans, 95, 95279538.Google Scholar
Pacanowski, R.C. & Philander, S.G.H. 1981. Parameterization of vertical mixing in numerical models of the tropical oceans. Journal of Physical Oceanography, 11, 14431451.Google Scholar
Parish, T.R. 1983. The influence of the Antarctic Peninsula on the wind field over the western Weddell Sea. Journal of Geophysical Research - Oceans and Atmospheres, 88, 26842692.Google Scholar
Parkinson, C.L. & Washington, W.M. 1979. A large-scale numerical model of sea ice. Journal of Geophysical Research - Oceans and Atmospheres, 84, 311337.Google Scholar
Renfrew, I.A., King, J.C. & Markus, T. 2002. Coastal polynyas in the southern Weddell Sea: variability of the surface energy budget. Journal of Geophysical Research - Oceans, 107, 10.1029/2000J0000720.Google Scholar
Schroeder, D., Heinemann, G. & Willmes, S. 2011. The impact of a thermodynamic sea-ice module in the COSMO numerical weather prediction model on simulations for the Laptev Sea, Siberian Arctic. Polar Research, 30, 10.3402/polar.v30i0.6334 Google Scholar
Schwerdtfeger, W. 1975. The effect of the Antarctic Peninsula on the temperature regime of the Weddell Sea. Monthly Weather Review, 103, 4551.Google Scholar
Semtner, A.J. 1976. A model for thermodynamic growth of sea ice in numerical investigations of climate. Journal of Physical Oceanography, 6, 379389.Google Scholar
Spreen, G., Kaleschke, L. & Heygster, G. 2008. Sea ice remote sensing using AMSR-E 89 GHz channels. Journal of Geophysical Research - Oceans, 113, 10.1029/2005JC003384.Google Scholar
Steele, M., Morley, R. & Ermold, W. 2001. PHC: a global ocean hydrography with a high quality Arctic Ocean. Journal of Climate, 14, 20792087.Google Scholar
Tamura, T., Ohshima, K.I. & Nihashi, S. 2008. Mapping of sea ice production for Antarctic coastal polynyas. Geophysical Research Letters, 35, 10.1029/2007GL032903.Google Scholar
Timmermann, R. & Beckmann, A. 2004. Parameterization of vertical mixing in the Weddell Sea. Ocean Modelling, 6, 83100.Google Scholar
Timmermann, R., Danilov, S., Schröter, J., Böning, C., Sidorenko, D. & Rollenhagen, K. 2009. Ocean circulation and sea ice distribution in a finite element global sea ice-ocean model. Ocean Modelling, 27, 114129.Google Scholar
Timmermann, R., Le Brocq, A., Deen, T., Domack, E., Dutrieux, P., Galton-Fenzi, B., Hellmer, H., Humbert, A., Jansen, D., Jenkins, A., Lambrecht, A., Makinson, K., Niederjasper, F., Nitsche, F., Nøst, O.A., Smedsrud, L.H. & Smith, W.H.F. 2010. A consistent data set of Antarctic ice sheet topography, cavity geometry, and global bathymetry. Earth System Science Data, 2, 10.5194/essd-2-261-2010.Google Scholar
Yuan, X.J. 2004. ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms. Antarctic Science, 16, 415425.Google Scholar