Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-11T08:44:10.817Z Has data issue: false hasContentIssue false

Calcium carbonate saturation states along the West Antarctic Peninsula

Published online by Cambridge University Press:  28 October 2021

Elizabeth M. Jones*
Affiliation:
Institute of Marine Research, Fram Centre, Hjalmar Johansens gate 14, 9007 Tromsø, Norway NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
Mario Hoppema
Affiliation:
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Climate Sciences Department, Postfach 120161, 27515 Bremerhaven, Germany
Karel Bakker
Affiliation:
NIOZ, Royal Netherlands Institute for Sea Research, Department of Ocean Systems (OCS), Den Burg, The Netherlands Utrecht University, PO Box 59, Den Burg 1790 AB, The Netherlands
Hein J.W. de Baar
Affiliation:
NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands Ocean Ecosystems, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands

Abstract

The waters along the West Antarctic Peninsula (WAP) have experienced warming and increased freshwater inputs from melting sea ice and glaciers in recent decades. Challenges exist in understanding the consequences of these changes on the inorganic carbon system in this ecologically important and highly productive ecosystem. Distributions of dissolved inorganic carbon (CT), total alkalinity (AT) and nutrients revealed key physical, biological and biogeochemical controls of the calcium carbonate saturation state (Ωaragonite) in different water masses across the WAP shelf during the summer. Biological production in spring and summer dominated changes in surface water Ωaragonite (ΔΩaragonite up to +1.39; ~90%) relative to underlying Winter Water. Sea-ice and glacial meltwater constituted a minor source of AT that increased surface water Ωaragonite (ΔΩaragonite up to +0.07; ~13%). Remineralization of organic matter and an influx of carbon-rich brines led to cross-shelf decreases in Ωaragonite in Winter Water and Circumpolar Deep Water. A strong biological carbon pump over the shelf created Ωaragonite oversaturation in surface waters and suppression of Ωaragonite in subsurface waters. Undersaturation of aragonite occurred at < ~1000 m. Ongoing changes along the WAP will impact the biologically driven and meltwater-driven processes that influence the vulnerability of shelf waters to calcium carbonate undersaturation in the future.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arrigo, K.R., van Dijken, G. & Long, M. 2008. Coastal Southern Ocean: a strong anthropogenic CO2 sink. Geophysical Research Letters, 35, 10.1029/2008gl035624.CrossRefGoogle Scholar
Bednaršek, N., Tarling, G., Bakker, D., Fielding, S., Jones, E.M., Venables, H.J., et al. 2012. Extensive dissolution of live pteropods in the Southern Ocean. Nature Geoscience, 5, 10.1038/ngeo1635.CrossRefGoogle Scholar
Broecker, W.S. & Peng, T.H. 1982. Tracers in the sea. Palisades, NY: Eldigio Press.Google Scholar
Brown, M.S., Munro, D.R., Feehan, C.J., Sweeney, C., Ducklow, H.W. & Schofield, O.M. 2019. Enhanced oceanic CO2 uptake along the rapidly changing West Antarctic Peninsula. Nature Climate Change, 9, 10.1038/s41558-019-0552-3.CrossRefGoogle Scholar
Clarke, A., Meredith, M.P., Wallace, M.I., Brandon, M.A. & Thomas, D.N. 2008. Seasonal and interannual variability in temperature, chlorophyll and macronutrients in northern Marguerite Bay, Antarctica. Deep-Sea Research II, 55, 10.1016/j.dsr2.2008.04.035.Google Scholar
Dickson, A.G. 1981. An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Research A, 28, 10.1016/0198-0149(81)90121-7.CrossRefGoogle Scholar
Dickson, A.G. & Millero, F.J. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Research A, 34, 10.1016/0198-0149(87)90021-5.CrossRefGoogle Scholar
Dickson, A.G., Sabine, C. & Christian, J.R. 2007. Guide to best practices for ocean CO2 measurements. PICES Special Publication, No. 3, 1191.Google Scholar
Dieckmann, G.S., Nehrke, G., Papadimitriou, S., Göttlicher, J., Steininger, R., Kennedy, H., et al. 2008. Calcium carbonate as ikaite crystals in Antarctic sea ice. Geophysical Research Letters, 35, 10.1029/2008GL033540.CrossRefGoogle Scholar
Dinniman, M.S., St-Laurent, P., Arrigo, K.R., Hofmann, E.E. & Van Dijken, G.L. 2020. Analysis of iron sources in Antarctic continental shelf waters. Journal of Geophysical Research - Oceans, 125, e2019JC015736.CrossRefGoogle Scholar
Ducklow, H.W., Fraser, W., Meredith, M., Stammerjohn, S., Doney, S., Martinson, D., et al. 2013. West Antarctic Peninsula: an ice-dependent coastal marine ecosystem in transition. Oceanography, 26, 10.5670/oceanog.2013.62.CrossRefGoogle Scholar
Feely, R.A., Sabine, C.L., Lee, K., Berelson, W., Kleypas, J., Fabry, V.J. & Millero, F.J. 2004. Impact of Anthropogenic CO2 on the CaCO3 system in the oceans. Science, 305, 10.1126/science.1097329.CrossRefGoogle ScholarPubMed
Friis, K., Körtzinger, A. & Wallace, D.W.R. 2003. The salinity normalization of marine inorganic carbon chemistry data. Geophysical Research Letters, 30, 10.1029/2002GL015898.CrossRefGoogle Scholar
Goldman, J. & Brewer, P., 1980. Effect of nitrogen source and growth rate on phytoplankton-mediated changes in alkalinity. Limnology and Oceanography, 25, 10.4319/lo.1980.25.2.0352.CrossRefGoogle Scholar
Hall, A. & Visbeck, M. 2002. Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the Annular Mode. Journal of Climate, 15, 10.1175/1520-0442(2002)015<3043:SVITSH>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Hauri, C., Doney, S.C., Takahashi, T., Erickson, M., Jiang, G. & Ducklow, H.W. 2015. Two decades of inorganic carbon dynamics along the West Antarctic Peninsula. Biogeosciences, 12, 10.5194/bg-12-6761-2015.CrossRefGoogle Scholar
Henley, S.F., Jones, E.M., Venables, H.J., Meredith, M.P., Firing, Y.L., Dittrich, R., et al. 2018. Macronutrient and carbon supply, uptake and cycling across the Antarctic Peninsula shelf during summer. Philosophical Transactions of the Royal Society, 376, 10.1098/rsta.2017.0168.Google ScholarPubMed
Hoppema, M. & Goeyens, L. 1999. Redfield behaviour of carbon, nitrogen and phosphorus depletions in Antarctic surface water. Limnology and Oceanography, 44, 10.4319/lo.1999.44.1.0220.CrossRefGoogle Scholar
Jones, E.M., Bakker, D.C.E., Venables, H.J., Whitehouse, M.J., Korb, R.E. & Watson, A.J. 2011. Rapid changes in surface water carbonate chemistry during Antarctic sea ice melt. Tellus B, 62, 10.1111/j.1600-0889.2010.00496.x.Google Scholar
Jones, E.M., Fenton, M., Meredith, M.P., Clargo, N.M., Ossebaar, S., Ducklow, H.W., et al. 2017. Ocean acidification and calcium carbonate saturation states in the coastal zone of the West Antarctic Peninsula. Deep-Sea Research II, 139, 10.1016/j.dsr2.2017.01.007.Google Scholar
Kerr, R., Mata, M.M., Mendes, C.R.B. & Secchi, E.R. 2018. Northern Antarctic Peninsula: a marine climate hotspot of rapid changes on ecosystems and ocean dynamics. Deep-Sea Research II, 149, 49.CrossRefGoogle Scholar
Legge, O.J., Bakker, D.C.E., Meredith, M.P., Venables, H.J., Brown, P.J., Jones, E.M. & Johnson, M.T. 2017. The seasonal cycle of carbonate system processes in Ryder Bay, West Antarctic Peninsula. Deep-Sea Research II, 139, 167180.CrossRefGoogle Scholar
Martinson, D.G., Stammerjohn, S.E., Iannuzzi, R.A., Smith, R.C. & Vernet, M. 2008. Western Antarctic Peninsula physical oceanography and spatio-temporal variability. Deep-Sea Research II, 55, 10.1016/j.dsr2.2008.04.038.Google Scholar
Mehrbach, C., Culberson, C.H., Hawley, J.E. & Pytkowicz, R.M. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography, 18, 897907.CrossRefGoogle Scholar
Meredith, M.P., Venables, H.J., Clarke, A., Ducklow, H.W., Erickson, M., Leng, M.J., et al. 2013. The freshwater system west of the Antarctic Peninsula: spatial and temporal changes. Journal of Climate, 26, 10.1175/JCLI-D-25 12-00246.1.CrossRefGoogle Scholar
Mojica Prieto, F.J. & Millero, F.J. 2002. The values of pK1 + pK2 for the dissociation of carbonic acid in seawater. Geochimica et Cosmochimica Acta, 66, 10.1016/S0016-7037(02)00855-4.CrossRefGoogle Scholar
Olsen, A., Lange, N., Key, R.M., Tanhua, T., Álvarez, M., Becker, S., et al. 2019. GLODAPv2.2019 - an update of GLODAPv2. Earth System Science Data, 11, 10.5194/essd-11-1437-2019.CrossRefGoogle Scholar
Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., et al. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437, 10.1038/nature04095.CrossRefGoogle ScholarPubMed
Redfield, A. 1958. The biological control of chemical factors in the environment. American Scientist, 3, 205221.Google Scholar
Rysgaard, S., Glud, R.N., Sejr, M.K., Bendtsen, J. & Christensen, P.B. 2007. Inorganic carbon transport during sea ice growth and decay: a carbon pump in polar seas. Journal of Geophysical Research, 112, 10.1029/2006JC003572.CrossRefGoogle Scholar
Sarmiento, J.L. & Gruber, N. 2006. Ocean biogeochemical dynamics. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Schofield, O., Saba, G., Coleman, K., Carvalho, F., Couto, N., Ducklow, H., et al. 2017. Decadal variability in coastal phytoplankton community composition in a changing West Antarctic Peninsula. Deep-Sea Research I, 124, 4254.CrossRefGoogle Scholar
Smith, D.A., Hofmann, E.E., Klinck, J.M. & Lascara, C.M. 1999. Hydrography and circulation of the West Antarctic Peninsula continental shelf. Deep-Sea Research I, 46, 10.1016/S0967-0637(98)00103-4.CrossRefGoogle Scholar
Stammerjohn, S.E., Martinson, D.G., Smith, R.C., Yuan, X. & Rind, D. 2008. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. Journal of Geophysical Research, 113, 10.1029/2007JC004269.CrossRefGoogle Scholar
Thibodeau, P.S., Steinberg, D.K., Stammerjohn, S.E. & Hauri, C. 2019. Environmental controls on pteropod biogeography along the Western Antarctic Peninsula. Limnology and Oceanography, 64, 10.1002/lno.11041.CrossRefGoogle Scholar
Tortell, P.D., Bittig, H.C., Körtzinger, A., Jones, E.M. & Hoppema, M. 2015. Biological and physical controls on N2, O2, and CO2 distributions in contrasting Southern Ocean surface waters. Global Biogeochemical Cycles, 29, 10.1002/2014GB004975.CrossRefGoogle Scholar
Tréguer, P., Bowler, C., Moriceau, B., Dutkiewicz, S., Gehlen, M., Aumont, O., et al. 2018. Influence of diatom diversity on the ocean biological carbon pump. Nature Geoscience, 11, 2737.CrossRefGoogle Scholar
Trimborn, S., Hoppe, C.J., Taylor, B.B., Bracher, A. & Hassler, C. 2015. Physiological characteristics of open ocean and coastal phytoplankton communities of Western Antarctic Peninsula and Drake Passage waters. Deep-Sea Research I, 98, 115124.CrossRefGoogle Scholar
Tynan, E., Clarke, J.S., Humphreys, M.P., Ribas-Ribas, M., Esposito, M., Rérolle, V.M.C., et al. 2016. Physical and biogeochemical controls on the variability in surface pH and calcium carbonate saturation states in the Atlantic sectors of the Arctic and Southern Oceans. Deep-Sea Research II, 127, 10.1016/j.dsr2.2016.01.001.Google Scholar
van Heuven, S., Pierrot, D., Rae, J., Lewis, E. & Wallace, D. 2011. MATLAB program developed for CO2 system calculations. ORNL/CDIAC-105b. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, 10.3334/CDIAC/otg.CO2SYS.Google Scholar
Vaughan, D.G., Marshall, G.J., Connolley, W.M., Parkinson, C., Mulvaney, R., Hodgson, D.A., et al. 2003. Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60, 10.1023/A:1026021217991.CrossRefGoogle Scholar
Venables, H.J., Clarke, A. & Meredith, M.P. 2013. Wintertime controls on summer stratification and productivity at the Western Antarctic Peninsula. Limnology and Oceanography, 58, 10.4319/lo.2013.58.3.1035.CrossRefGoogle Scholar
Vernet, M., Martinson, D., Iannuzzi, R., Stammerjohn, S., Kozlowski, W., Sines, K., et al. 2008. Primary production within the sea-ice zone west of the Antarctic Peninsula: sea ice, summer mixed layer, and irradiance. Deep-Sea Research II, 55, 10.1016/j.dsr2.2008.05.021.Google Scholar
Wolf-Gladrow, D.A., Zeebe, R.E., Klaas, C., Körtzinger, A. & Dickson, A.G. 2007. Total alkalinity: the explicit conservative expression and its application to biogeochemical processes. Marine Chemistry, 106, 10.1016/j.marchem.2007.01.006.CrossRefGoogle Scholar