Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T06:35:43.721Z Has data issue: false hasContentIssue false

Chlorophyta, Xanthophyceae and Cyanobacteria in Wright Valley, Antarctica

Published online by Cambridge University Press:  22 April 2015

Phil M. Novis*
Affiliation:
Allan Herbarium, Landcare Research, PO Box 69040, Lincoln 7640, New Zealand
Jackie Aislabie
Affiliation:
Landcare Research, Private Bag 3127, Hamilton 3240, New Zealand
Susan Turner
Affiliation:
BioDiscovery NZ, 24 Balfour Rd, Parnell, Auckland, New Zealand
Malcolm McLeod
Affiliation:
Landcare Research, Private Bag 3127, Hamilton 3240, New Zealand

Abstract

Wright Valley, Victoria Land contains numerous aquatic habitats suitable for the growth of algae in summer. Excepting diatoms and lichen phycobionts, algal diversity and distribution in the valley was documented. Using cultures and environmental cloning eight cyanobacterial and 14 eukaryotic species were revealed. The cyanobacterium Microcoleus vaginatus and the chlorophycean Chlorococcum sp. 1 were the most common, both occurring in more than one habitat (ponds, soils or streams). Ponds harboured the most diverse communities. Habitat specialization was rare. Chlamydomonads were not found outside ponds, but species capable of zoospore production were able to colonize ponds and soils. Nostocalean cyanobacteria were not detected. Results suggest dispersal within and between valleys, with little evidence of Antarctic endemism. All but one cyanobacterium with similar internally transcribed spacer (ITS) length to clones from Miers Valley proved to be different species when 16S rRNA gene sequences were also considered; thus, ITS length is unreliable for assessing identity and biogeography of these cyanobacteria. Comparison with a 454 16S rRNA gene soil dataset from Wright Valley indicated the occurrence of only one of the cyanobacterial species, the distribution of which may be limited by salinity.

Type
Biological Sciences
Copyright
© Antarctic Science Ltd 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aislabie, J.M., Chhour, K.-L., Saul, D.J., Miyauchi, S., Ayton, J., Paetzold, R.F. & Balks, M.R. 2006. Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biology & Biochemistry, 38, 30413056.Google Scholar
Barrett, J.E., Virginia, R.A., Wall, D.H., Cary, S.C., Adams, B.J., Hacker, A.L. & Aislabie, J.M. 2006. Co-variation in soil biodiversity and biogeochemistry in northern and southern Victoria Land, Antarctica. Antarctic Science, 18, 535548.CrossRefGoogle Scholar
Blakemore, L.C., Searle, P.L. & Daly, B.K. 1987. Methods for chemical analysis of soils. New Zealand Soil Bureau Scientific Report 80. Wellington: New Zealand Department of Scientific and Industrial Research, 103 pp.Google Scholar
Bolch, C.J.S. & Blackburn, S.I. 1996. Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kütz. Journal of Applied Phycology, 8, 513.CrossRefGoogle Scholar
Boyer, S.L., Flechtner, V.R. & Johansen, J.R. 2001. Is the 16S-23S internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in Cyanobacteria. Molecular Biology and Evolution, 18, 10571069.CrossRefGoogle ScholarPubMed
Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J., Fierer, N. & Knight, R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America, 108, 45164522.Google Scholar
Cowan, D.A., Khan, N., Pointing, S.B. & Cary, S.C. 2010. Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarctic Science, 22, 714720.Google Scholar
Darling, R.B., Friedmann, E.I. & Broady, P.A. 1987. Heterococcus endolithicus sp. nov. (Xanthophyceae) and other terrestrial Heterococcus species from Antarctica: morphological changes during life history and response to temperature. Journal of Phycology, 23, 598607.Google Scholar
Daugbjerg, N. & Andersen, R.A. 1997. A molecular phylogeny of the heterokont algae based on analyses of chloroplast-encoded rbcL sequence data. Journal of Phycology, 33, 10311041.Google Scholar
De Wever, A., Leliaert, F., Verleyen, E., Vanormelingen, P., van der Gucht, K., Hodgson, D.A., Sabbe, K. & Vyverman, W. 2009. Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. Proceedings of the Royal Society - Biological Sciences, B276, 35913599.Google Scholar
Dreesens, L.L., Lee, C.K. & Cary, S.C. 2014. The distribution and identity of edaphic fungi in the McMurdo Dry Valleys. Biology, 3, 466483.Google Scholar
Feng, X., Simpson, A.J., Gregorich, E.G., Elberling, B., Hopkins, D.W., Sparrow, A.D., Novis, P.M., Greenfield, L.G. & Simpson, M.J. 2010. Chemical characterization of microbial-dominated soil organic matter in the Garwood Valley, Antarctica. Geochimica et Cosmochimica Acta, 74, 64856498.Google Scholar
Fernandez-Carazo, R., Hodgson, D.A., Convey, P. & Wilmotte, A. 2011. Low cyanobacteria diversity in biotopes of the Transantarctic Mountains and Shackleton Range (80–82 degrees S), Antarctica. FEMS Microbiology Ecology, 77, 503517.Google Scholar
Hawes, I. & Schwarz, A.M.J. 2001. Absorption and utilization of irradiance by cyanobacterial mats in two ice-covered Antarctic lakes with contrasting light climates. Journal of Phycology, 37, 515.Google Scholar
Holm-Hansen, O. 1964. Isolation and culture of terrestrial and freshwater algae of Antarctica. Phycologia, 4, 4351.Google Scholar
Jungblut, A.D., Lovejoy, C. & Vincent, W.F. 2010. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME Journal, 4, 191202.Google Scholar
Jungblut, A.D., Vincent, W.F. & Lovejoy, C. 2012. Eukaryotes in Arctic and Antarctic cyanobacterial mats. FEMS Microbiology Ecology, 82, 416428.Google Scholar
Jungblut, A.D., Hawes, I., Mountfort, D., Hitzfeld, B., Dietrich, D.R., Burns, B.P. & Neilan, B.A. 2005. Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environmental Microbiology, 7, 519529.Google Scholar
Komárek, J. 2012. Nomenclatural changes in heterocytous Cyanoprokaryotes (Cyanobacteria, Cyanophytes). Fottea, 12, 141148.Google Scholar
Komárek, J. & Anagnostidis, K. 2005. Cyanoprokaryota 2. Teil: Oscillatoriales. In Büdel, B., Krienitz, K., Gärtner, G. & Schagerl, M., eds. Süsswasserflora von Mitteleuropa 19/2. Munich: Elsevier, 759 pp.Google Scholar
Kovacs, A., Yacoby, K. & Gophna, U. 2010. A systematic assessment of automated ribosomal intergenic spacer analysis (ARISA) as a tool for estimating bacterial richness. Research in Microbiology, 161, 192197.Google Scholar
Lee, C.K., Barbier, B.A., Bottos, E.M., McDonald, I.R. & Cary, S.C. 2012. The Inter-Valley Soil Comparative Survey: the ecology of Dry Valley edaphic microbial communities. ISME Journal, 6, 10461057.Google Scholar
Michaud, A.B., Šabacká, M.S. & Priscu, J.C. 2012. Cyanobacterial diversity across landscape units in a polar desert: Taylor Valley, Antarctica. FEMS Microbiology Ecology, 82, 268278.Google Scholar
Niederberger, T.D., Sohm, J.A., Tirindelli, J., Gunderson, T., Capone, D.G., Carpenter, E.J. & Cary, S.C. 2012. Diverse and highly active diazotrophic assemblages inhabit ephemerally wetted soils of the Antarctic Dry Valleys. FEMS Microbiology Ecology, 82, 376390.CrossRefGoogle ScholarPubMed
Novis, P.M. & Visnovsky, G. 2012. Novel alpine algae from New Zealand: Chlorophyta. Phytotaxa, 39, 130.Google Scholar
Novis, P.M., Lorenz, M., Broady, P.A. & Flint, E.A. 2010. Parallela Flint: its phylogenetic position in the Chlorophyceae and the polyphyly of Radiofilum Schmidle. Phycologia, 49, 373383.Google Scholar
Nozaki, H., Itoh, M., Sano, R., Uchida, H., Watanabe, M.M. & Kuroiwa, T. 1995. Phylogenetic relationships within the colonial Volvocales (Chlorophyta) inferred from rbcL gene sequence data. Journal of Phycology, 31, 970979.Google Scholar
Pointing, S.B., Chan, Y., Lacap, D.C., Lau, M.C.Y., Jurgens, J.A. & Farrell, R.L. 2009. Highly specialised microbial diversity in hyper-arid polar desert. Proceedings of the National Academy of Sciences of the United States of America, 106, 19 96419 969.Google Scholar
R Core Team . 2014. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, Available at: http://www.R-project.org/.Google Scholar
Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. & Stanier, R.Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111, 161.Google Scholar
Rybalka, N., Wolf, M., Andersen, R.A. & Friedl, T. 2013. Congruence of chloroplast- and nuclear-encoded DNA sequence variations used to assess species boundaries in the soil microalga Heterococcus (Stramenopiles, Xanthophyceae). BMC Evolutionary Biology, 13, 10.1186/1471-2148-13-39.Google Scholar
Seaburg, K.G., Parker, B.C., Prescott, G.W. & Whitford, L.A. 1979. The algae of Southern Victoria Land, Antarctica: a taxonomic and distributional study. Vaduz: J. Cramer, 168 pp.Google Scholar
Smith, J.L., Barrett, J.E., Tusnády, G., Rejtö, L. & Cary, S.C. 2010. Resolving environmental drivers of microbial community structure in Antarctic soils. Antarctic Science, 22, 673680.Google Scholar
Sparrow, A.D., Gregorich, E.G., Hopkins, D.W., Novis, P., Elberling, B. & Greenfield, L.G. 2011. Resource limitations on soil microbial activity in an Antarctic dry valley. Soil Science Society of America Journal, 75, 21882197.Google Scholar
Strunecký, O., Elster, J. & Komárek, J. 2012. Molecular clock evidence for survival of Antarctic cyanobacteria (Oscillatoriales, Phormidium autumnale) from Paleozoic times. FEMS Microbiology Ecology, 82, 482490.Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 27252729.Google Scholar
Taton, A., Grubisic, S., Ertz, D., Hodgson, D.A., Piccardi, R., Biondi, N., Tredici, M.R., Mainini, M., Losi, D., Marinelli, F. & Wilmotte, A. 2006. Polyphasic study of Antarctic cyanobacterial strains. Journal of Phycology, 42, 12571270.Google Scholar
Tschermak-Woess, E. & Friedmann, E.I. 1984. Hemichloris antarctica, gen. et sp. nov. (Chlorococcales, Chlorophyta), a cryptoendolithic alga from Antarctica. Phycologia, 23, 443454.Google Scholar
Wood, S.A., Rueckert, A., Cowan, D.A. & Cary, S.C. 2008a. Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME Journal, 2, 308320.Google Scholar
Wood, S.A., Mountfort, D., Selwood, A.I., Holland, P.T., Puddick, J. & Cary, S.C. 2008b. Widespread distribution and identification of eight novel microcystins in Antarctic cyanobacterial mats. Applied and Environmental Microbiology, 74, 72437251.Google Scholar
Supplementary material: PDF

Novis supplementary material

Novis supplementary material 1

Download Novis supplementary material(PDF)
PDF 531.5 KB