Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T14:58:55.089Z Has data issue: false hasContentIssue false

Granitoids and dykes of the Pine Island Bay region, West Antarctica

Published online by Cambridge University Press:  14 May 2012

Andrea Kipf
Affiliation:
Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Wischhofstr. 1–3, D-24148 Kiel, Germany
Nicholas Mortimer
Affiliation:
GNS Science, Private Bag 1930, Dunedin, New Zealand
Reinhard Werner*
Affiliation:
Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Wischhofstr. 1–3, D-24148 Kiel, Germany
Karsten Gohl
Affiliation:
Alfred Wegener Institut für Polar- und Meeresforschung, Postfach 120161, D-27515 Bremerhaven, Germany
Paul Van Den Bogaard
Affiliation:
Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Wischhofstr. 1–3, D-24148 Kiel, Germany
Folkmar Hauff
Affiliation:
Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Wischhofstr. 1–3, D-24148 Kiel, Germany
Kaj Hoernle
Affiliation:
Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Wischhofstr. 1–3, D-24148 Kiel, Germany
*
*Corresponding author: rwerner@geomar.de

Abstract

We present geochronological and geochemical data for eight plutonic rocks from five locations in the Pine Island Bay area of West Antarctica, collected during RV Polarstern expedition ANT-XXIII/4. Ar-Ar laser method dating yielded closure temperatures ages of c. 147–98 Ma for dioritic and granitic plutonic rocks and an age range of c. 97–95 Ma for granitoid and trachyandesitic dykes. Major and trace element compositions indicate that all rocks have an I-type subduction-related chemistry. There are no A-type granitic rocks in our dataset, and none are yet reported from the Pine Island Bay area. Our results confirm earlier models of post 100 Ma subduction on this part of the Gondwana margin.

Type
Earth Sciences
Copyright
Copyright © Antarctic Science Ltd 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baksi, A.K. 2007. A quantitative tool for detecting alteration in undisturbed rocks and minerals - I: water, chemical weathering, and atmospheric argon. Geological Society of America Special Paper, 430, 285303.Google Scholar
Bradshaw, J.D. 1989. Cretaceous geotectonic pattern in the New Zealand region. Tectonics, 8, 803820.CrossRefGoogle Scholar
Carignan, J., Hild, P., Mevelle, G., Morel, J.Yeghicheyan, D. 2001. Routine analyses of trace elements in geological samples using flow, injection and low pressure online liquid chromatography coupled to ICP-MS: a study of reference materials BR, DR-N, UB-N, AN-G and GH. Geostandards Newsletter, 25, 187198.CrossRefGoogle Scholar
Cassata, W.S., Renne, P.R.Shuster, D.L. 2009. Argon diffusion in plagioclase and implications for thermochronometry: a case study from the Bushveld Complex, South Africa. Geochimica et Cosmochimica Acta, 73, 66006612.CrossRefGoogle Scholar
Craddock, C., Bastien, T.W.Rutford, R.H. 1964. Geology of the Jones Mountains area. In Adie, R.J., ed. Antarctic geology. Amsterdam: North Holland Publishing, 171187.Google Scholar
Davy, B., Hoernle, K.Werner, R. 2008. Hikurangi Plateau: crustal structure, rifted formation, and Gondwana subduction history. Geochemistry Geophysics Geosystems, 9, 10.1029/2007GC001855.CrossRefGoogle Scholar
Defant, M.J.Drummond, M.S. 1990. Derivation of some modern arc magmas by partial melting of young subducted lithosphere. Nature, 347, 662665.CrossRefGoogle Scholar
Eagles, G., Gohl, K.Larter, R.D. 2004. High-resolution animated tectonic reconstruction of the South Pacific and West Antarctic margin. Geochemistry, Geophysics, Geosystems, 5, 10.1029/2003GC000657.CrossRefGoogle Scholar
Flowerdew, M.J., Millar, I.L., Vaughan, A.P.M.Pankhurst, R.J. 2005. Age and tectonic significance of the Lassiter Coast intrusive suite, eastern Ellsworth Land, Antarctic Peninsula. Antarctic Science, 17, 443452.CrossRefGoogle Scholar
Gohl, K. In press. Basement control on past ice sheet dynamics in the Amundsen Sea embayment, West Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 10.1016/j.palaeo.2011.02.022.Google Scholar
Gohl, K., Teterin, D., Eagles, G., Netzeband, G., Grobys, J., Parsiegla, N., Schlüter, P., Leinweber, V., Larter, R.D., Uenzelmann-Neben, G.Udintsev, G.B. 2007. Geophysical survey reveals tectonic structures in the Amundsen Sea embayment, West Antarctica. In Cooper, A.K., Raymond, C.R.et al., eds. Antarctica: a keystone in a changing world - online proceedings of the 10th international symposium of Antarctic earth sciences, USGS Open-File Report 2007-1047, Short Research Paper, 047.Google Scholar
Grobys, J.W.D., Gohl, K.Uenzelmann-Neben, G. 2009. Extensional and magmatic nature of the Campbell Plateau and Great South Basin from deep crustal studies. Tectonophysics, 472, 213225.CrossRefGoogle Scholar
Hoernle, K., Hauff, F., van den Bogaard, P., Werner, R., Mortimer, N., Geldmacher, J., Garbe-Schönberg, D.Davy, B. 2010. Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic plateaus. Geochimica et Cosmochimica Acta, 74, 71967219.CrossRefGoogle Scholar
Hofmann, A.W. 1988. Chemical differentiation of the earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planetary Science Letters, 90, 297314.CrossRefGoogle Scholar
Jarrard, R.D. 1986. Relations among subduction parameters. Reviews of Geophysics, 24, 217284.CrossRefGoogle Scholar
Jordan, T.A., Ferraccioli, F., Vaughan, D.G., Holt, J.W., Corr, H., Blankenship, D.D.Diehl, T.M. 2010. Aerogravity evidence for major crustal thinning under the Pine Island Glacier region (West Antarctica). Geological Society of America Bulletin, 122, 714726.CrossRefGoogle Scholar
Lanphere, M.A.Dalrymple, G.B. 2000. First-principles calibration of 38Ar tracers: implications for the ages of 40Ar/39Ar fluence monitors. United States Geological Survey Professional Paper, 1621, 110.Google Scholar
Leat, P.T., Scarrow, J.H.Millar, I.L. 1995. On the Antarctic Peninsula batholith. Geological Magazine, 132, 399412.CrossRefGoogle Scholar
Leat, P.T., Storey, B.C.Pankhurst, R.J. 1993. Geochemistry of Palaeozoic-Mesozoic Pacific rim orogenic magmatism, Thurston Island area, West Antarctica. Antarctic Science, 5, 281296.CrossRefGoogle Scholar
Luyendyk, B.P. 1995. Hypothesis for Cretaceous rifting of East Gondwana caused by subducted slap capture. Geology, 23, 373376.2.3.CO;2>CrossRefGoogle Scholar
Maslanyj, M.Storey, B.C. 1990. Regional aeromagnetic anomalies in Ellsworth Land: crustal structure and Mesozoic microplate boundaries within West Antarctica. Tectonics, 9, 15151532.CrossRefGoogle Scholar
McDonough, W.F.Sun, S.-S. 1995. The composition of the Earth. Chemical Geology, 120, 223253.CrossRefGoogle Scholar
McDougall, I.Harrison, T.M. 1999. Geochronology and thermochronology by the 40Ar/39Ar method, 2nd ed. Oxford: Oxford University Press, 269 pp.CrossRefGoogle Scholar
Mortimer, N., Hoernle, K., Hauff, F., Palin, J.M., Dunlop, W.J., Werner, R.Faure, K. 2006. New constraints on the age and evolution of the Wishbone Ridge, southwest Pacific Cretaceous microplates, and Zealandia-West Antarctica breakup. Geology, 34, 185188.CrossRefGoogle Scholar
Mukasa, S.B.Dalziel, I.W.D. 2000. Marie Byrd Land, West Antarctica: evolution of the Gondwana's Pacific margin constrained by zircon U-Pb geochronology and feldspar common-Pb isotopic compositions. Geological Society of America Bulletin, 112, 611627.2.0.CO;2>CrossRefGoogle Scholar
Müller, R.D., Gohl, K., Cande, S.C., Goncharov, A.Golynsky, A.V. 2007. Eocene to Miocene geometry of the West Antarctic Rift System. Australian Journal of Earth Sciences, 54, 10331045.CrossRefGoogle Scholar
Pankhurst, R.J., Millar, I.L., Grunow, A.M.Storey, B.C. 1993. The pre-Cenozoic magmatic history of the Thurston Island crustal block, West Antarctica. Journal of Geophysical Research, 98, 11 83511 849.CrossRefGoogle Scholar
Pankhurst, R.J., Weaver, S.D., Bradshaw, J.D., Storey, B.C.Ireland, T.R. 1998. Geochronology and geochemistry of pre-Jurassic superterranes in Marie Byrd Land, Antarctica. Journal of Geophysical Research, 103, 25292547.CrossRefGoogle Scholar
Pearce, J.A., Harris, N.B.W.Tindle, A. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956983.CrossRefGoogle Scholar
Richards, J.P.Kerrick, R. 2007. Adakite-like rocks: their diverse origins and questionable role in metallogenesis. Economic Geology, Special Paper, 102, 537576.CrossRefGoogle Scholar
Siddoway, C.S., Baldwin, S., Fitzgerald, P.G., Fanning, C.M.Luyedndyk, B.P. 2004. Ross Sea mylonites and the timing of intracontinental extension within the West Antarctic Rift System. Geology, 32, 5760.CrossRefGoogle Scholar
Smith, W.H.F.Sandwell, D.T. 1997. Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962.CrossRefGoogle Scholar
Storey, B.C., Leat, P.T., Weaver, S.D., Pankhurst, R.J., Bradshaw, J.D.Kelley, S. 1999. Mantle plumes and Antarctica-New Zealand rifting: evidence from mid-Cretaceous mafic dykes. Journal of the Geological Society, 156, 659671.CrossRefGoogle Scholar
Tulloch, A.J.Kimbrough, D.L. 2003. Paired plutonic belts in convergent margins and the development of high Sr/Y magmatism: peninsular ranges batholith of Baja California and median batholith of New Zealand. Geological Society of America Special Paper, 374, 275295.Google Scholar
Tulloch, A.J., Ramezani, J., Mortimer, N., Mortensen, J., van den Bogaard, P.Maas, R. 2009. Cretaceous felsic volcanism in New Zealand and Lord Howe Rise (Zealandia) as a precursor to final Gondwana break-up. In Ring, U. & Wernicke, B.,eds. Extending a continent: architecture, rheology and heat budget. Geological Society of London Special Publication, No. 321, 89118.Google Scholar
Vaughan, A.P.M.Storey, B.C. 2000. The eastern Palmer Land shear zone: a new terrane accretion model for the Mesozoic development of the Antarctic Peninsula. Journal of the Geological Society, 157, 12431256.CrossRefGoogle Scholar
Wareham, C.D., Millar, I.L.Vaughan, A.P.M. 1997. The generation of sodic granite magmas, western Palmer Land, Antarctic Peninsula. Contributions to Mineralogy and Petrology, 128, 8196.CrossRefGoogle Scholar
Weaver, S.D., Adams, C.J., Pankhurst, R.J.Gibson, I.L. 1992. Granites of the Edward VII Peninsula, Marie Byrd Land: anorogenic magmatism related to Antarctic - New Zealand rifting. Transactions of the Royal Society of Edinburgh, Earth Sciences, 83, 281290.CrossRefGoogle Scholar
Weaver, S.D., Storey, B.C., Pankhurst, R.J., Mukasa, S.B., DiVenere, V.J.Bradshaw, J.D. 1994. Antarctica-New Zealand rifting and Marie Byrd Land lithospheric magmatism linked to ridge subduction and mantle plume activity. Geology, 22, 811814.2.3.CO;2>CrossRefGoogle Scholar
Supplementary material: File

Kipf supplementary material

Appendix

Download Kipf supplementary material(File)
File 98.8 KB