Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T19:48:32.876Z Has data issue: false hasContentIssue false

A Holocene palaeoenviromental study of a sediment core from Ile de la Possession, Iles Crozet, sub-Antarctica

Published online by Cambridge University Press:  15 April 2011

Marijke Ooms*
Affiliation:
University of Antwerp (CDE), Department of Biology, Research Group of Polar Ecology, Limnology and Geomorphology, Universiteitsplein 1, B-2610 Wilrijk, Belgium
Bart van de Vijver
Affiliation:
National Botanic Garden of Belgium, Department of Bryophyta & Thallophyta, Domein van Bouchout, B-1860 Meise, Belgium
Stijn Temmerman
Affiliation:
University of Antwerp (CDE), Department of Biology, Research Group of Polar Ecology, Limnology and Geomorphology, Universiteitsplein 1, B-2610 Wilrijk, Belgium
Louis Beyens
Affiliation:
University of Antwerp (CDE), Department of Biology, Research Group of Polar Ecology, Limnology and Geomorphology, Universiteitsplein 1, B-2610 Wilrijk, Belgium

Abstract

Ile de la Possession is one of the few islands in the southern Indian Ocean, making the island a valuable place to reconstruct past environmental and climatic changes. In this study a peat sediment core was analysed to reconstruct the changes that occurred before, during and after the eruption of the Morne Rouge (10 000–5500 14C yr bp) volcano. In addition to sedimentological analyses, diatom communities were used to reconstruct humidity and altitude, based on existing transfer functions. Radiocarbon dating of a tephra layer showed that the Morne Rouge volcano erupted between 6700–6600 cal. yr bp, giving a much more precise time scale for this event. The eruption was preceded by a tsunami flooding, indicated by the high numbers of marine diatoms found immediately before the tephra layer. After the eruption pioneer diatom species recolonized the coring site. Evidence is presented of the late climatic optimum around 3050 cal. yr bp, preceded by a cooling event until 6600 cal. yr bp. Nutrient input from elephant seals and wandering albatrosses obscured the climate signal for the last 600 cal yr bp.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellair-Roche, N. 1972. Palynological study of a peat bog in Vallée des Branloires, Ile de la Possession. In Adie, R.J., ed. Antarctic geology and geophysics. Oslo: Universitetsforlaget, 831834.Google Scholar
Bellair-Roche, N. 1976a. L'holocène de l'anse Betsy (Ile Kerguelen). Comptes Rendus de l'Académie des Sciences de Paris, série D, 282, 13471349.Google Scholar
Bellair-Roche, N. 1976b. Les variations climatiques de l'holocène supérieur des îles Kerguelen: d'après la coupe d'une tourbière de la plainte de Dante (côte méridionale). Comptes Rendus de l'Académie des Sciences de Paris, série D, 282, 12571260.Google Scholar
Bellair-Roche, N. Delibrias, G. 1967. Variations climatiques durant le dernier millénaire aux ïles Kerguelen. Comptes Rendus de l'Académie des Sciences de Paris, série D, 264, 20852088.Google Scholar
Bentley, M.J., Hodgson, D.A., Smith, J.A., Ó Cofaigh, C., Domack, E.W., Larter, R.D., Roberts, S.J., Brachfeld, S., Leventer, A., Hjort, C., Hillenbrand, C.-D. Evans, J. 2009. Mechanisms of Holocene palaeoenvironmental change in the Antarctic Peninsula region. The Holocene, 19, 5169.CrossRefGoogle Scholar
Beyens, L. Denys, L. 1982. Problems in diatom analysis of deposits - Allochtonous valves and fragmentation. Geologie en Mijnbouw, 61, 159162.Google Scholar
Boersma, P.D. 2008. Penguins as marine sentinels. Bioscience, 58, 597607.CrossRefGoogle Scholar
Bronk-Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon, 51, 337360.CrossRefGoogle Scholar
Crosta, X., Romero, O., Armand, L.K. Pichon, J.J. 2005. The biogeography of major diatom taxa in Southern Ocean sediments: 2. Open ocean related species. Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 6692.CrossRefGoogle Scholar
Egorov, Y. 2007. Tsunami wave generation by the eruption of underwater volcano. Natural Hazards and Earth System Sciences, 7, 6569.CrossRefGoogle Scholar
Frenot, Y. 1986. Interactions entre la faune lombricienne et les systèmes édaphiques d'une île subantarctique:Ile de la Possession, Archipel Crozet. PhD thesis, Université de Rennes, 358 pp. [Unpublished].Google Scholar
Frenot, Y., Gloaguen, J.C., Masse, L. Lebouvier, M. 2001. Human activities, ecosystem disturbance and plant invasions in subantarctic Crozet, Kerguelen and Amsterdam islands. Biological Conservation, 101, 3350.CrossRefGoogle Scholar
Frenot, Y., Gloaguen, J.C., van De Vijver, B. Beyens, L. 1997. Datation de quelques sédiments tourbeux holocènes et oscillations glaciaires aux îles Kerguelen. Comptes Rendus de l'Académie des Sciences de Paris, 320, 567573.Google Scholar
Giret, A., Weis, D., Zhou, X., Cottin, J.Y. Tourpin, S. 2003. Géologie des îles Crozet. Géologues, 137, 1523.Google Scholar
Gremmen, N.J.M., van De Vijver, B., Frenot, Y. Lebouvier, M. 2007. Distribution of moss-inhabiting diatoms along an altitudinal gradient at sub-Antarctic Iles Kerguelen. Antarctic Science, 19, 1724.CrossRefGoogle Scholar
Hodgson, D.A. Convey, P. 2005. A 7000-year record of Oribatid mite communities on a maritime-Antarctic island: responses to climate change. Arctic, Antarctic and Alpine Research, 37, 239245.CrossRefGoogle Scholar
Hodgson, D.A. Sime, L.C. 2010. Southern westerlies and CO2. Nature Geoscience, 3, 666667.CrossRefGoogle Scholar
Hodgson, D.A., Doran, P.T., Roberts, D. McMinn, A. 2004. Paleolimnological studies from the Antarctic and sub-Antarctic islands. In Pienitz, R., Douglas, M.S.V. & Smol, J.P., eds. Long-term environmental change in Acrtic and Antarctic lakes. Dordrecht: Kluwer, 419474.CrossRefGoogle Scholar
Ingólfsson, Ó., Hjort, C., Berkman, P.A., Svante, B., Colhoun, E., Goodwin, I.D., Hall, B., Hirakawa, K., Melles, M., Möller, P. Prentice, M.L. 1998. Antarctic glacial history since the Last Glacial Maximum: an overview of the record on land. Antarctic Science, 10, 326344.CrossRefGoogle Scholar
Jones, V.J., Hodgson, D.A. Chepstow-Lusty, A. 2000. Palaeolimnological evidence for marked Holocene environmental changes on Signy Island, Antarctica. Holocene, 10, 4360.CrossRefGoogle Scholar
Jongman, R.H.G., Ter Braak, C.J.F. van Tongeren, O.F.R. 1995. Data analysis in community and landscape ecology. Cambridge: Cambridge University Press, 299 pp.CrossRefGoogle Scholar
Jung, W. 1936. Thecamöben unsprünglicher lebender deutscher Hochmoore. Abhandlungen Landesmus Naturkunde Muester Westfalen, 7, 187.Google Scholar
Krammer, K. 2000. Diatoms of Europe. Diatoms of the European inland waters and comparable habitats. Vol. 1. The genus Pinnularia. Ruggell: Gantner, 703 pp.Google Scholar
Larson, D.D. 1974. Paleoecological investigations of diatoms in a core from Kerguelen Islands, Southeast Indian Ocean. Ohio, OH: Ohio Statue University, Institute of Polar Studies, Report no. 50, 70 pp.Google Scholar
Last, W.M. Smol, J.P. 2001. Tracking environmental change using lake sediments. Volume 2: Physical and geochemical methods. Dordrecht: Kluwer, 528 pp.Google Scholar
McCormac, F.G., Hogg, A.G., Blackwell, P.G., Buck, C.E., Higham, T.F.G. Reimer, P.J. 2004. SHCal04 Southern Hemisphere Calibration 0–11.0 cal. kyr bp. Radiocarbon, 46, 10871092.CrossRefGoogle Scholar
McGlone, M.S., Turney, C.S.M., Wilmshurst, J.M., Renwick, J. Pahnke, K. 2010. Divergent trends in land and ocean temperature in the Southern Ocean over the past 18,000 years. Nature Geoscience, 10.1038/NGEO931.CrossRefGoogle Scholar
Medlin, L.K. Priddle, J. 1990. Polar marine diatoms. Cambridge: British Antarctic Survey, 214 pp.Google Scholar
Meisterfeld, R. 1977. Horizontal and vertical distribution of Testacea (Rhizopoda–Testacea) in Sphagnum. Archiv Fur Hydrobiologie, 79, 319356.Google Scholar
Moravcová, A., Beyens, L. van de Vijver, B. 2009. Diatom communities in soils influenced by the wandering albatross (Diomedea exulans). Polar Biology, 33, 241255.CrossRefGoogle Scholar
Nielsen, S.H.H., Koç, N. Crosta, X. 2004. Holocene climate in the Atlantic sector of the Southern Ocean: controlled by insolation or ocean circulation? Geology, 32, 317320.CrossRefGoogle Scholar
Pahnke, K. Sachs, J.P. 2006. Sea surface temperatures of southern midlatitudes 0–160 kyr bp. Paleoceanography, 21, 10.1029/2005pa001191.CrossRefGoogle Scholar
R Development Core Team 2009. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, http://www.R-project.org.Google Scholar
Stockmarr, J. 1971. Tablets with spores used in absolute pollen analysis. Pollen Spores, 13, 615621.Google Scholar
Stoermer, E.F. Smol, J.P. 1999. The diatoms: applications for the environmental and earth sciences. Cambridge: Cambridge University Press, 469 pp.CrossRefGoogle Scholar
Stott, L.D., Timmermann, A. Thunell, R. 2007. Southern Hemisphere and deep-sea warming led deglacial atmospheric CO. Science, 318, 435438.CrossRefGoogle Scholar
Ter Braak, C.J.F. Šmilauer, P. 1998. CANOCO reference manual and user's guide to Canoco for Windows: software for Canonical Community Ordination (ver. 4). Ithaca, NY: Microcomputer Power, 352 pp.Google Scholar
Van de Vijver, B. 1999. A Protistologival approach of the ecology and palaeo-ecology of the Subantarctic and Maritime Antarctic Region. PhD thesis, University of Antwerp, 278 pp.Google Scholar
Van de Vijver, B. Beyens, L. 1999. Moss diatom communities from Ile de la Possession (Crozet, Subantarctica) and their relationship with moisture. Polar Biology, 22, 219231.CrossRefGoogle Scholar
Van de Vijver, B., Frenot, Y. Beyens, L. 2002. Freshwater diatoms from Ile de la Possession (Crozet Archipelago, Subantarctica). Berlin: J. Cramer, 412 pp.Google Scholar
Van de Vijver, B., Ledeganck, P. Beyens, L. 2001. Habitat preferences in freshwater diatom communities from sub-Antarctic Iles Kerguelen. Antarctic Science, 13, 2836.CrossRefGoogle Scholar
Van der Putten, N., Stieperaere, H., Verbruggen, C. Ochyra, R. 2004. Holocene palaeoecology and climate history of South Georgia (sub-Antarctica) based on a macrofossil record of bryophytes and seeds. Holocene, 14, 382392.CrossRefGoogle Scholar
Van Der Putten, N., Hebrard, J.P., Verbruggen, C., van De Vijver, B., Disnar, J.R., Spassov, S., De Beaulieu, J.L., De Dapper, M., Keravis, D., Hus, J., Thouveny, N. Frenot, Y. 2008. An integrated palaeoenvironmental investigation of a 6200 year old peat sequence from Ile de la Possession, Iles Crozet, sub-Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 270, 179195.CrossRefGoogle Scholar
Van der Werff, A. 1955. A new method of concentrating and cleaning diatoms and other organisms. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie, 12, 276277.Google Scholar
Verleyen, E., Hodgson, D.A., Milne, G.A., Sabbe, K. Vyverman, W. 2005. Relative sea-level history from the Lambert Glacier region, East Antarctica, and its relation to deglaciation and Holocene glacier readvance. Quaternary Research, 63, 4552.CrossRefGoogle Scholar
Verleyen, E., Hodgson, D.A., Sabbe, K., Cremer, H., Emslie, S.D., Gibson, J., Hall, B., Imura, S., Kudoh, S., Marshall, G.J., Mcminn, A., Melles, M., Newman, L., Roberts, D., Roberts, S.J., Singh, S.M., Sterken, M., Tavernier, I., Verkulich, S., van De Vyver, E., van Nieuwenhuyze, W., Vyverman, W. Wagner, B. 2010. Post-glacial regional climate variability along the East Antarctic coastal margin-evidence from shallow marine and coastal terrestrial records. Earth Science Reviews, 10.1016/j.earscirev.2010.10.006.Google Scholar
Vincke, S. 2006. Diversity and ecology of the testate amoebae fauna of Ile de la Possession (Crozet Archipelago, sub-Antarctica). PhD thesis, University of Antwerp, 260 pp. [Unpublished].Google Scholar
Young, S.B. Schofield, E.K. 1973. Pollen evidence for Late Quaternary climate changes on Kerguelen Islands. Nature, 245, 311312.CrossRefGoogle Scholar