Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T22:15:23.416Z Has data issue: false hasContentIssue false

Hydrodynamic modelling of Port Foster, Deception Island, Antarctica

Published online by Cambridge University Press:  14 December 2017

Daniel Figueiredo*
Affiliation:
MARETEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
Aires Dos Santos
Affiliation:
MARETEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
Marcos Mateus
Affiliation:
MARETEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
Ligia Pinto
Affiliation:
MARETEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal

Abstract

Over the last decade, the Antarctic continent has been the object of intensive scientific programmes. However, the emphasis of these studies rarely focuses on the Antarctic as a source of potential elements such as mercury. The release of mercury to the environment is known to occur at Deception Island, associated with volcanic activity. In this study, a 3D hydrodynamic model was used to assess the role of water circulation on the dispersion of released mercury. Sea level variation and tidal circulation data were obtained. Residence time was calculated using two different approaches. Internal tide generation in summer and winter were recognized and the barotropic tidal components obtained. Lagrangian tracers were used to depict particle circulation (simulating particulate mercury) in a three month summer simulation for barotropic and baroclinic conditions. The results show that particles accumulate in the northern and western parts of the bay. It is acknowledged that the results of the 3D model are associated with a non-negligible uncertainty, which can only be reduced with an ongoing commitment to monitoring. The findings of this study indicate that mercury accumulation is occurring in Port Foster (Deception Island), which is a potential threat to the local ecosystem.

Type
Physical Sciences
Copyright
© Antarctic Science Ltd 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baines, P.G. 1982. On internal tide generation models. Deep-Sea Research A - Oceanographic Research Papers, 29, 307338.Google Scholar
Baraldo, A. & Rinaldi, C.A. 2000. Stratigraphy and structure of Deception Island, South Shetland Islands, Antarctica. Journal of South American Earth Sciences, 13, 785796.CrossRefGoogle Scholar
Barclay, A.H., Wilcock, W.S.D. & Ibáñez, J.M. 2009. Bathymetric constraints on the tectonic and volcanic evolution of Deception Island volcano, South Shetland Islands. Antarctic Science, 21, 153167.Google Scholar
Bargagli, R, Battisti, E, Focardi, S. & Formichi, P. 1993. Preliminary data on environmental distribution of mercury in northern Victoria Land, Antarctica. Antarctic Science, 5, 38.Google Scholar
Coelho, H.S., Neves, R.R., Leitão, P.C., Martins, H. & Santos, A.P. 1999. The slope current along the western European margin: a numerical investigation. Boletin Instituto Espanol de Oceanografia, 15, 6172.Google Scholar
Craig, P.D. 1987. Solutions for the internal tide generation over coastal topography. Journal of Marine Research, 45, 83105.Google Scholar
de Ferro, A.M. 2012. Fontes, transporte e especiação de elementos traço nos compartimentos ambientais da ilha Deception, Antártida. Msc thesis, Universidade Técnica de Lisboa, 75–76. [Unpublished].Google Scholar
de Ferro, A.M., Mota, A.M. & Canário, J. 2014. Pathways and speciation of mercury in the environmental compartments of Deception Island, Antarctica. Chemosphere, 95, 227233.Google Scholar
Ebinghaus, R., Kock, H.H., Temme, C., Einax, J.W., Lowe, A.G., Richter, A., Burrows, J.P. & Schroeder, W.H. 2002. Antarctic springtime depletion of atmospheric mercury. Environmental Science & Technology, 36, 12381244.Google Scholar
Foster, T.D., Foldvik, A. & Middleton, J.H. 1987. Mixing and bottom water formation in the shelf break region of the southern Weddell Sea. Deep-Sea Research A - Oceanographic Research Papers, 34, 17711794.Google Scholar
Flexas, M.M., Arias, M.R. & Ojeda, M.A. 2017. Hydrography and dynamics of Port Foster, Deception Island. Antarctic Science, 29, 8393.Google Scholar
Galindo-Zaldívar, J., Jabaloy, A., Maldonado, A. & Sanz de Galdeano, C. 1996. Continental fragmentation along the South Scotia Ridge transcurrent plate boundary (NE Antarctic Peninsula). Tectonophysics, 258, 275301.Google Scholar
González-Casado, J.M., Giner-Robles, J.L. & López-Martínez, J. 2000. Bransfield Basin, Antarctic Peninsula: not a normal backarc basin. Geology, 28, 10431046.Google Scholar
Hawkes, D.D. 1961. The geology of the South Shetland Islands. II: The geology and petrology of Deception Island. Falkland Islands Dependencies Survey Scientific Reports, No. 27, 43.Google Scholar
Lenn, Y.D., Chereskin, T.K. & Glatts, R.C. 2003. Seasonal to tidal variability in currents, stratification, and acoustic backscatter in an Antarctic ecosystem at Deception Island. Deep-Sea Research II - Topical Studies in Oceanography, 50, 16651683.Google Scholar
Levine, M.D., Padman, L., Muench, R.D. & Morison, J.H. 1997. Internal waves and tides in the western Weddell Sea: observations from Ice Station Weddell. Journal of Geophysical Research - Oceans, 102, 10731089.Google Scholar
Lopez, O., Garcia, M.A., Gomis, D., Rojas, P., Sospedra, J. & Sanchez-Arcilla, A. 1999. Hydrographic and hydrodynamic characteristics of the eastern basin of the Bransfield Strait (Antarctica). Deep-Sea Research I - Oceanographic Research Papers, 46, 17551778.Google Scholar
Lyard, F., Lefevre, F., Letellier, T. & Francis, O. 2006. Modelling the global ocean tides: modern insights from FES2004. Ocean Dynamics, 56, 394415.CrossRefGoogle Scholar
Martins, F., Leitão, P.C., Silva, A. & Neves, R. 2001. 3D modeling in the Sado estuary using a new generic vertical discretization approach. Oceanologica Acta, 24, S51S62.CrossRefGoogle Scholar
Molina, A., de Pablo, M.A. & Ramos, M. 2013. Deception Island, Antarctica, an Earth–Mars analogue. Extended abstract. 44th Lunar and Planetary Science Conference, pp. 2. Available at: https://www.lpi.usra.edu/meetings/lpsc2013/pdf/1202.pdf.Google Scholar
Murakami, K. 1991. Tidal exchange mechanism in enclosed regions. Proceedings of the 2nd International Conference on Hydraulic Modelling of Coastal Estuaries and River Waters, 111–120.Google Scholar
Padman, L. 1995. Small-scale processes in the Arctic Ocean. In Smith, Jr, W.O. & Grebmeier, J.M., eds. Arctic oceanography: marginal ice zones and continental shelves. Washington, DC: American Geophysical Union, 97129.Google Scholar
Padman, L., Plueddemann, A.J., Muench, R.D. & Pinkel, R. 1992. Diurnal tides near the Yermak Plateau. Journal of Geophysical Research, 97, 12 63912 652.CrossRefGoogle Scholar
Pereira, A.F. & Castro, B.M. 2007. Internal tides in the southwestern Atlantic off Brazil: observations and numerical modeling. Journal of Physical Oceanography, 37, 15121526.Google Scholar
Pereira, J.L., Pereira, P., Padeiro, A., Goncalves, F., Amaro, E., Leppe, M., Verkulich, S., Hughes, K.A., Peter, H.U. & Canário, J. 2017. Environmental hazard assessment of contaminated soils in Antarctica: using a structured tier 1 approach to inform decision-making. Science of the Total Environment, 574, 443454.CrossRefGoogle ScholarPubMed
Pérez-López, R., Giner-Robles, J.L., Martínez-Díaz, J.J., Rodríguez-Pascua, M.A., Bejar, M., Paredes, C. & González-Casado, J.M. 2007. Active tectonics on Deception Island (West Antarctica): a new approach by using the fractal anisotropy of lineaments, fault slip measurements and the caldera collapse shape. In Cooper, A.K., Barrett, P.J., Stagg, H., Storey, B., Stump, E., Wise, W. & the 10th ISAES Editorial Team ., eds. Antarctica: a keystone in a changing world. Washington, DC: The National Academic Press, 4 pp.Google Scholar
Siegel, S.M., Siegel, B.Z. & McMurtry, G. 1980. Atmosphere–soil mercury distribution: biotic factor. Water Air and Soil Pollution, 13, 109112.Google Scholar
Smith, K.L. 2003. Ecosystem studies at Deception Island, Antarctica: an overview. Deep-Sea Research II - Topical Studies in Oceanography, 50, 15951609.Google Scholar
Sturz, A.A., Gray, S.C., Dykes, K., King, A. & Radtke, J. 2003. Seasonal changes of dissolved nutrients within and around Port Foster Deception Island, Antarctica. Deep-Sea Research II - Topical Studies in Oceanography, 50, 16851705.Google Scholar
Torrecillas, C., Berrocoso, D. & García-García, A. 2006. The Multidisciplinary Scientific Information Support System (SIMAC) for Deception Island. In Fütterer, D.K., Damaske, D., Kleinschmidt, G., Miller, H. & Tessensohn, F., eds. Antarctica: contributions to global earth sciences. Berlin: Springer, 397402.Google Scholar
Trancoso, A.R., Saraiva, S., Fernandes, L., Pina, P., Leitão, P. & Neves, R. 2005. Modelling macroalgae using a 3D hydrodynamic-ecological model in a shallow, temperate estuary. Ecological Modelling, 187, 232246.Google Scholar
Vaz, N., Dias, J.M., Leitão, P. & Martins, W. 2005. Horizontal patterns of water temperature and salinity in an estuarine tidal channel: Ria de Aveiro. Ocean Dynamics, 55, 416429.CrossRefGoogle Scholar
Vaz, N., Mateus, M., Plecha, S., Sousa, M.C., Leitão, P.C., Neves, R. & Dias, J.M. 2015. Modeling SST and chlorophyll patterns in a coupled estuary-coastal system of Portugal: the Tagus case study. Journal of Marine Systems, 147, 123137.Google Scholar
Vidal, J., Berrocoso, M. & Fernandez-Ros, A. 2012. Study of tides and sea levels at Deception and Livingston islands. Antarctic Science, 24, 193201.CrossRefGoogle Scholar
Vidal, J., Berrocoso, M. & Jigena, B. 2011. Hydrodynamic modelling of Port Foster, Deception Island (Antarctica). In Machado, J.A.T., Baleanu, D. & Luo, A.C.J., eds. Nonlinear and complex dynamics: applications in physical, biological and financial systems. Berlin: Springer, 193203.Google Scholar