Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T19:45:47.579Z Has data issue: false hasContentIssue false

Impact of the B-15 iceberg “stranding event” on the physical and biological properties of sea ice in McMurdo Sound, Ross Sea, Antarctica

Published online by Cambridge University Press:  23 May 2008

J.-P. Remy*
Affiliation:
Laboratoire de Glaciologie, DSTE, Université Libre de Bruxelles (ULB), avenue F.D. Roosevelt 50, CP 160/03, 1050 Bruxelles, Belgium
S. Becquevort
Affiliation:
Laboratoire d'Ecologie des Systèmes Aquatiques, Université Libre de Bruxelles (ULB), Bd. du Triomphe, CP 221, 1050 Bruxelles, Belgium
T.G. Haskell
Affiliation:
Industrial Research Ltd, Gracefield Road, PO Box 31310, Lower Hutt, New Zealand
J.-L. Tison
Affiliation:
Laboratoire de Glaciologie, DSTE, Université Libre de Bruxelles (ULB), avenue F.D. Roosevelt 50, CP 160/03, 1050 Bruxelles, Belgium

Abstract

Ice cores were sampled at four stations in McMurdo Sound (Ross Sea) between 1999 and 2003. At the beginning of year 2000, a very large iceberg (B-15) detached itself from the Ross Ice Shelf and stranded at the entrance of the Sound, preventing the usual oceanic circulation purging of the annual sea ice cover from this area. Ice textural studies showed that a second year sea ice cover was built-up at three out of the four stations: ice thickness increased to about 3 m. Repeated alternation of columnar and platelet ice appeared, and bulk salinity showed a strong decrease, principally in the upper part of the ice sheet, with associated brine volume decrease. Physical modification influenced the biology as well. By decreasing the light and space available for organisms in the sea ice cover, the stranding of B-15 has i) hampered autotrophic productivity, with chlorophyll a concentration and algae biomass significantly lower for second year ice stations, and ii) affected trophic relationships such as the bacterial biomass/chl a concentration correlation, or the autotrophic to heterotrophic ratio.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archer, S.D., Leakey, R.J.G., Burkill, P.H., Sleigh, M.A. & Appleby, C.J. 1996. Microbial ecology of sea ice at a coastal Antarctic site: community composition, biomass and temporal change. Marine Ecology Progress Series, 135, 179195.CrossRefGoogle Scholar
Arrigo, K.R., Kremer, J.N. & Sullivan, C.W. 1993. A simulated Antarctic fast-ice ecosystem. Journal of Geophysical Research, 98, 69296946.CrossRefGoogle Scholar
Arrigo, K.R., Dieckmann, G., Gosselin, M., Robinson, D.H., Fritsen, C.H. & Sullivan, C.W. 1995. High resolution study of the platelet ice ecosystem in McMurdo Sound, Antarctica - biomass, nutrient and production profiles within a dense microalgal bloom. Marine Ecology Progress Series, 127, 255268.CrossRefGoogle Scholar
Arrigo, K.R., van Dijken, G.L., Ainley, D.G., Fahnestock, M.A. & Markus, T. 2002. Ecological impact of a large Antarctic iceberg. Geophysical Research Letters, 29, 10.1029/2001GL014160.CrossRefGoogle Scholar
Assmann, K., Hellmer, H.H.& Beckmann, A. 2003. Seasonal variation in circulation and water mass distribution on the Ross Sea continental shelf. Antarctic Science, 15, 311.CrossRefGoogle Scholar
Backstrom, L.G.E.& Eicken, H. 2006. Capacitance probe measurements of brine volume and bulk salinity in first year sea ice. Cold Regions Science and Technology, 46, 167180.CrossRefGoogle Scholar
Barry, J.P. 1988. Hydrographic patterns in McMurdo Sound, Antarctica and their relationship to local benthic communities. Polar Biology, 8, 377391.CrossRefGoogle Scholar
Barry, J.P. & Dayton, P.K. 1988. Current patterns in McMurdo Sound, Antarctica and their relationship to local biotic communities. Polar Biology, 8, 367376.CrossRefGoogle Scholar
Becquevort, S. & Smith, W.O. Jr 2001. Aggregation, sedimentation and biodegradability of phytoplankton-derived material during spring in the Ross Sea, Antarctica. Deep-Sea Research II, 48, 41554178.CrossRefGoogle Scholar
Buckley, R.G. & Trodahl, H.J. 1987. Thermally driven changes in the optical properties of sea ice. Cold Region Science and Technology, 14(2), 201204.CrossRefGoogle Scholar
Bunt, J.S. 1963. Diatoms of Antarctica sea-ice as agents of primary production. Nature, 199, 12541257.CrossRefGoogle Scholar
Bunt, J.S. 1968. Some characteristics of microalgae isolated from Antarctic sea-ice. Antarctic Research Series, 11, 114.Google Scholar
Bunt, J.S. & Lee, C.C. 1969. Observations within and beneath Antarctic sea ice in McMurdo Sound and the Weddell Sea, methods and data. Institute of Marine Science Technical Report, 69-1, 32 pp.Google Scholar
Bunt, J.S. & Lee, C.C. 1970. Seasonal primary production in Antarctic sea ice at McMurdo Sound in 1967. Journal of Marine Research, 28, 304320.Google Scholar
Cota, G.F. & Sullivan, C.W. 1990. Photoadaptation, growth and production of bottom ice algae in the Antarctic. Journal of Phycology, 26, 399411.CrossRefGoogle Scholar
Cottier, F.R., Eicken, H. & Wadhams, P. 1999. Linkages between salinity and brine channel distribution in young sea ice. Journal of Geophysical Research, 104, 1585915871.CrossRefGoogle Scholar
Cox, G.F.N. & Weeks, W.F. 1974. Salinity variations in sea ice. Journal of Glaciology, 13, 109120.CrossRefGoogle Scholar
Cox, G.F.N. & Weeks, W.F. 1983. Equations for determining the gas and brine volumes in sea-ice samples. Journal of Glaciology, 29, 306316.CrossRefGoogle Scholar
Doran, P.T., Dana, G.L., Hastings, J.T. & Wharton, R.A. Jr 1995. The McMurdo LTER Automatic Weather Network (LAWN). Antarctic Journal of the United States, 30(5), 276280.Google Scholar
Eicken, H. 1992. Salinity profiles of Antarctic sea ice: field data and model results. Journal of Geophysical Research, 97, 1554515557.CrossRefGoogle Scholar
Eicken, H. 2003. From the microscopic, to the macroscopic, to the regional scale: growth, microstructure and properties of sea ice. In Thomas, D.N. & Dieckmann, G.S., eds. Sea ice: an introduction to its physics, chemistry, biology and geology. Oxford: Blackwell Science, 2281.CrossRefGoogle Scholar
Garrison, D.L. & Buck, K.R. 1986. Organism losses during ice melting: a serious bias in sea ice community studies. Polar Biology, 6, 237239.CrossRefGoogle Scholar
Geider, R.J., MacIntyre, H.L. & Kana, T.M. 1998. Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a: carbon ratio to light, nutrient limitation and temperature. Limnology and Oceanography, 43, 679694.CrossRefGoogle Scholar
Golden, K.M., Ackley, S.F. & Lytle, V.I. 1998. The percolation phase transition in sea ice. Science, 282, 22382241.CrossRefGoogle ScholarPubMed
Gow, A.J., Ackley, S.F., Govoni, J.W. & Weeks, W.F. 1998. Physical and structural properties of land-fast sea ice in McMurdo Sound, Antarctica. Antarctic Research Series, 74, 355374.Google Scholar
Grossi, S.M., Kottmeier, S.T., Moe, R.L., Taylor, G.T. & Sullivan, C.W. 1987. Sea ice microbial communities. VI. Growth and primary production in bottom ice under graded snow cover. Marine Ecology Progress Series, 35, 153164.CrossRefGoogle Scholar
Günther, S. & Dieckmann, G.S. 1999. Seasonal development of algal biomass in snow-covered fast ice and the underlying platelet layer in the Weddell Sea, Antarctica. Antarctic Science, 11, 305315.CrossRefGoogle Scholar
Harrison, P.J., Waters, R.E. & Taylor, F.J.R. 1980. A broad spectrum artificial seawater medium for coastal and open ocean phytoplankton. Journal of Phycology, 16, 2835.Google Scholar
Heine, A.J. 1963. Ice breakout around the southern end of Ross Island, Antarctica. New Zealand Journal of Geology and Geophysics, 6, 395402.CrossRefGoogle Scholar
Hillebrand, H., Dürselen, C.-D. & Kirschtel, D. 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35, 403424.CrossRefGoogle Scholar
Horner, R.A. & Schrader, G.C. 1982. Relative contributions of ice algae, phytoplankton, and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. Arctic, 35, 485503.CrossRefGoogle Scholar
Horner, R.A., Syversten, E.E., Thomas, D.P. & Lange, C. 1988. Proposed terminology and reporting units for sea ice algal assemblages. Polar Biology, 8, 249253.CrossRefGoogle Scholar
Horner, R., Ackley, S.F., Dieckmann, G.S., Gulliksen, B., Hoshiai, T., Legendre, L., Melnikov, I.A., Reeburgh, W.S., Spindler, M. & Sullivan, C.W. 1992. Ecology of sea ice biota. 1. Habitat, terminology, and methodology. Polar Biology, 12, 417427.CrossRefGoogle Scholar
Jeffries, M.O. & Weeks, W.F. 1992. Structural characteristics and development of sea ice in the western Ross Sea. Antarctic Science, 5, 6375.CrossRefGoogle Scholar
Jeffries, M.O., Weeks, W.F., Shaw, R. & Morris, K. 1993. Structural characteristics of congelation and platelet ice and their role in the development of Antarctic land-fast sea ice. Journal of Glaciology, 39, 223238.CrossRefGoogle Scholar
Johnston, M. 2006. Comparing the decay of first year ice in Arctic and sub-Arctic. Annals of Glaciology, 44, 154162.CrossRefGoogle Scholar
Knox, G.A. 1990. Primary production and consumption in McMurdo Sound, Antarctica. In Kerry, K.R. & Hempel, G., eds. Antarctic ecosystems: ecological change and conservation. Berlin: Springer, 175186.Google Scholar
Knox, G., Ling, N., Patrick, M. & Wilson, P. 2001. The state of the Ross Sea Region: marine environment. In Waterhouse, E.J., ed. Ross Sea Region 2001: A state of the Environment Report for the Ross Sea Region of Antarctica. Christchurch: New Zealand Antarctic Institute, 5.15.45.Google Scholar
Kovacs, A., Gow, A.J., Cragin, J.H. & Morey, R.M. 1982. The brine zone of the McMurdo Ice Shelf, Antarctica. CRREL Report, 82–39.Google Scholar
Krembs, C., Gradinger, R. & Spindler, M. 2000. Implications of brine channel geometry and surface area for the interaction of sympagic organisms in Arctic sea ice. Journal of Experimental Marine Biology and Ecology, 243, 5580.CrossRefGoogle Scholar
Langway, C.C. 1958. Ice fabrics and the universal stage. CRREL Technical Report, No. 62, 16 pp.Google Scholar
Leonard, G.H., Purdie, C.R., Langhorne, P.J., Haskell, T.G., Williams, M.J.M. & Frew, R.D. 2006. Observations of platelet ice growth and oceanographic conditions during the winter of 2003 in McMurdo Sound, Antarctica. Journal of Geophysical Research, 111, 10.1029/2005JC002952.CrossRefGoogle Scholar
Lepparänta, M. & Manninen, T. 1988. The brine and gas content of sea ice with attention to low salinities and high temperatures. Helsinki: Finnish Institute Marine Research Internal Report, No. 88–2, 14 pp.Google Scholar
Leventer, A. 2003. Particulate flux from sea ice in polar waters. In Thomas, D.N. & Dieckmann, G.S., eds. Sea ice: an introduction to its physics, chemistry, biology and geology. Oxford: Blackwell Science, 303332.CrossRefGoogle Scholar
Leventer, A., Dunbar, R.B., Allen, M.R. & Wayper, R.Y. 1987. Ice thickness in McMurdo Sound. Antarctic Journal of the United States of America, 22(5), 9496.Google Scholar
Leventer, A. & Dunbar, R.B. 1988. Recent diatom record of McMurdo Sound: implications for history of sea ice extent. Paleoceanography, 3, 259274.CrossRefGoogle Scholar
Lewis, E.L. & Perkin, R.G. 1985. The winter oceanography of McMurdo Sound, Antarctica. Antarctic Research Series, 43, 145165.CrossRefGoogle Scholar
Littlepage, J.L. 1965. Oceanographic investigations in McMurdo Sound, Antarctica. Antarctic Research Series, 5, 137.Google Scholar
Lorenzen, G.J. 1967. Determination of chlorophyll and phaeopigments: spectrometric equations. Limnology and Oceanography, 12, 343346.CrossRefGoogle Scholar
Maykut, G.A. 1985. The ice environment. In Horner, R.A., eds. Sea ice biota. Boca Raton, FL: CRC Press, 2179.Google Scholar
McMinn, A. 1995. Why are there no post-Palaeogene dinoflagellate cysts in the Southern Ocean? Micropaleontology, 41, 383386.CrossRefGoogle Scholar
McMinn, A., Skerratt, J., Trull, T., Ashworth, C. & Lizotte, M. 1999. Nutrient stress gradient in the bottom 5 cm of fast ice, McMurdo Sound, Antarctica. Polar Biology, 21, 220227.CrossRefGoogle Scholar
Menden-Deuer, S. & Lessard, E.J. 2000. Carbon to volume relationships for dinoflagellates, diatoms and other protist plankton. Limnology and Oceanography, 45, 569579.CrossRefGoogle Scholar
Mitchell, W.M. & Bye, J.A.T. 1985. Observations in the boundary layer under the sea ice in McMurdo Sound. Antarctic Research Series, 43, 167176.CrossRefGoogle Scholar
Mock, T. & Kroon, B.M.A. 2002. Photosynthetic energy conversion under extreme conditions. II: The significance of lipids under light limited growth in Antarctic sea ice diatoms. Phytochemistry, 61, 5360.CrossRefGoogle ScholarPubMed
Montresor, M., Procaccini, G. & Stoecker, D.K. 1999. Polarella glacialis, gen. nov., sp. nov. (Dinophyceae): Suessiaceae are still alive! Journal of Phycology, 35, 186197.CrossRefGoogle Scholar
Montresor, M.G., Lovejoy, C., Orsini, L., Procaccini, G. & Roy, S. 2003. Bipolar distribution of the cyst-forming dinoflagellate Polarella glacialis. Polar Biology, 26, 186194.CrossRefGoogle Scholar
Notz, D., Wettlaufer, J.S. & Worster, M.G. 2005. A non-destructive method for measuring the salinity and solid fraction of growing sea ice in situ. Journal of Glaciology, 51, 159166.CrossRefGoogle Scholar
Paige, R.A. 1966. Crystallographic studies of sea ice in McMurdo Sound, Antarctica. U.S. Naval Civil Engineering Laboratory, Technical Report R494, 31 pp.CrossRefGoogle Scholar
Paige, R.A. 1971. Breakout of the McMurdo Ice Shelf. U.S. Naval Civil Engineering Laboratory, Internal Report, No. 7, 24 pp.Google Scholar
Palmisano, A.C. & Sullivan, C.W. 1983. Sea ice microbial communities (SIMCO). I. Distribution, abundance, and primary production of ice microalgae in McMurdo Sound, Antarctica in 1980. Polar Biology, 2, 171177.CrossRefGoogle Scholar
Palmisano, A.C., SooHoo, J.B. & Sullivan, C.W. 1985. Photosynthetic –irradiance relationships in sea ice microalgae from McMurdo Sound, Antarctica. Journal of Phycology, 21, 341346.CrossRefGoogle Scholar
Palmisano, A.C., Lizotte, M.P., Smith, G.A., Nichols, P.D., White, D.C. & Sullivan, C.W. 1988. Changes in photosynthetic carbon assimilation in Antarctic sea-ice diatoms during spring bloom: variation in synthesis of lipid classes. Journal of Experimental marine Biology and Ecology, 116, 113.CrossRefGoogle Scholar
Perovich, D.K. 1996. The optical properties of sea ice. CRREL Monograph, 96-1, 25 pp.Google Scholar
Porter, K.G. & Feig, Y.S. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography, 25, 943948.CrossRefGoogle Scholar
Riaux-Gobin, C., Tréguer, P., Poulin, M.&Vétion, G. 2000. Nutrients, algal biomass and communities in land-fast ice and seawater off Adélie Land (Antarctica). Antarctic Science, 12, 160171.CrossRefGoogle Scholar
Robinson, M.J. 2006. An oceanographic study of the cavity beneath the McMurdo Ice Shelf, Antarctica PhD thesis, Victoria University, Wellington, 146 pp. [Unpublished].Google Scholar
Simon, M. & Azam, F. 1989. Protein content and protein synthesis rate of planktonic marine bacteria. Marine Ecology Progress Series, 51, 201213.CrossRefGoogle Scholar
Smith, W.O. Jr & Sakshaug, E. 1990. Polar phytoplankton. In Smith, W.O. Jr, ed. Polar oceanography, Part B: chemistry, biology and geology. San Diego, CA: Academic Press, 477525.CrossRefGoogle Scholar
Smith, I.J., Langhorne, P.J., Haskell, T.G., Trodaht, H.J., Frew, R. & Vennell, M.R. 2001. Platelets ice and the land-fast sea ice of McMurdo Sound, Antarctica. Annals of Glaciology, 33, 2127.CrossRefGoogle Scholar
Stewart, F.J. & Fritsen, C.H. 2004. Bacteria-algae relationships in Antarctic sea ice. Antarctic Science, 16, 143156.CrossRefGoogle Scholar
Stoecker, D.K., Gustafson, D.E., Merrell, J.R., Black, M.M.D. & Baier, C.T. 1997. Excystment and growth of chrysophytes and dinoflagellates at low temperatures and high salinities in Antarctic sea-ice. Journal of Phycology, 33, 585595.CrossRefGoogle Scholar
Stoecker, D.K., Gustafson, D.E., Black, M.M.D. & Baier, C.T. 1998. Population dynamics of microalgae in the upper land-fast sea ice at a snow-free location. Journal of Phycology, 34, 6069.CrossRefGoogle Scholar
Sullivan, C.W., Palmisano, A.C., Kottmeier, S. & Moe, R. 1982. Development of the sea ice microbial community in McMurdo Sound. Antarctic Journal of the United States, 17 (5), 155157Google Scholar
Sullivan, C.W. & Palmisano, A.C. 1984. Sea ice microbial communities: distribution, abundance and diversity of ice bacteria in McMurdo Sound, Antarctica in 1980. Applied & Environmental Microbiology, 47, 788795.CrossRefGoogle ScholarPubMed
Sullivan, C.W., Palmisano, A.C., Kottmeier, S., McGrath Grossi, S. & Moe, R. 1985. The influence of light on growth and development of the sea-ice microbial community of McMurdo Sound. In Siegfried, W.R., Condy, P.R. & Laws, R.M., eds. Antarctic nutrient cycles and food webs. Berlin: Springer, 7883.CrossRefGoogle Scholar
Thomas, D.N. & Papadimitriou, S. 2003. Biogeochemistry of sea ice. In Thomas, D.N. & Dieckmann, G.S., eds. Sea ice: an introduction to its physics, chemistry, biology and geology. Oxford: Blackwell Science, 267302.CrossRefGoogle Scholar
Tison, J.L., Lorrain, R.D., Bouzette, A., Dini, M., Bondesan, A. & Stievenard, M. 1998. Linking land-fast sea ice variability to marine ice accretion at Hells Gate ice shelf, Ross Sea. Antarctic Research Series, 74, 375407.Google Scholar
Tison, J.-L., Haas, C., Gowing, M.M., Sleewaegen, S. & Bernard, A. 2002. Tank study of physico-chemical controls on gas content and composition during growth of young sea ice. Journal of Glaciology, 48, 177191.CrossRefGoogle Scholar
Tison, J.-L., Lorrain, R., Verbeke, V., Lancelot, C., Becquevort, S., Schoemann, V., Chou, L., de Jong, J., Lanuzelle, D. & Dellile, B. 2003. Biogéochimie de la glace de mer dans la perspective des changements climatiques. ARC rapport annuel, 20022003, 57 pp.Google Scholar
Tison, J.-L., Lorrain, R., Verbeke, V., Lancelot, C., Becquevort, S., Schoemann, V., Chou, L., de Jong, J., Lanuzelle, D., Dellile, B., Dumont, I. & Masson, F. 2006. Biogéochimie de la glace de mer dans la perspective des changements climatiques. ARC rapport annuel, 20052006, 92 pp.Google Scholar
Watson, S.W., Novitsky, T.J., Quinby, H.L. & Valois, F.W. 1977. Determination of bacterial number and biomass in the marine environment. Applied Environmental Microbiology, 33, 940946CrossRefGoogle ScholarPubMed
Weeks, W.F. & Gow, A.J. 1978. Preferred crystal orientations in the fast ice along the margins of the Arctic Ocean. Journal of Geophysical Research, 83, 51055121.CrossRefGoogle Scholar
Weeks, W.F. & Gow, A.J. 1980. Crystal alignments in the fast ice of Arctic Alaska. Journal of Geophysical Research, 85, 11371146.CrossRefGoogle Scholar