Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T19:18:12.077Z Has data issue: false hasContentIssue false

Interannual variability of hydrographic properties in Potter Cove during summers between 2010 and 2017

Published online by Cambridge University Press:  14 January 2021

E.M. Ruiz Barlett*
Affiliation:
Instituto Antártico Argentino, Av. 25 de Mayo 1143 (B1650HMK), General San Martín, Buenos Aires, Argentina
M.E. Sierra
Affiliation:
Instituto Antártico Argentino, Av. 25 de Mayo 1143 (B1650HMK), General San Martín, Buenos Aires, Argentina
A.J. Costa
Affiliation:
Instituto Antártico Argentino, Av. 25 de Mayo 1143 (B1650HMK), General San Martín, Buenos Aires, Argentina
G.V. Tosonotto
Affiliation:
Instituto Antártico Argentino, Av. 25 de Mayo 1143 (B1650HMK), General San Martín, Buenos Aires, Argentina
*
*Departamento de Oceanografía, Instituto Antártico Argentino, Av. 25 de Mayo 1143 (B1650HMK), General San Martín, Buenos Aires, Argentinaeruizbarlett@yahoo.com.ar

Abstract

The temporal and spatial variability of oceanographic properties in Potter Cove was analysed for the 2010–17 summer periods. This was linked with meteorological parameters and sea ice. The water column structure presented significant differences in turbidity between two areas (away from and closer to the Fourcade Glacier). The recent retreat has been transforming it into a land terminating glacier. Therefore, correlations obtained between oceanographic properties near the glacier and meteorological parameters reveal that atmospheric conditions are the main forcing of the Potter system, in agreement with previous studies. Also, high turbidity values within deeper waters in 2013 and 2014 were probably related to resuspended glacial sediment input into the cove. Interannual variability observed in the local parameters was connected to ENSO and SAM, reflecting a larger connection with ENSO, mainly in longer timescales. Colder waters during the 2010 and 2016 El Niño phases could be related to lower air temperature. In summer 2010 during a negative SAM phase, colder, more saline and low turbid waters were observed. Alternatively, in 2012 during La Niña and positive SAM, warmer, fresher and more turbid conditions were found with high vertical stratification. Finally, during 2015 (positive SAM), warmer and low salinity waters were observed.

Type
Opinion
Copyright
Copyright © Antarctic Science Ltd 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bers, V.A., Momo, F., Schloss, I.R. & Abele, D. 2012. Analysis of trends and sudden changes in long-term environmental data from King George Island (Antarctica): relationships between global climatic oscillations and local system response. Climate Change, 116, 10.1007/s10584-012-0523-4.Google Scholar
Clem, K.R. & Fogt, R.L. 2013. Varying roles of ENSO and SAM on the Antarctic Peninsula climate in austral spring. Journal of Geophysical Research: Atmospheres, 118, 110.1002/jgrd.50860.Google Scholar
Deregibus, D., Quartino, M.I., Campana, G.L., Momo, F.R., Wiencke, C. & Zacher, K. 2016. Photosynthetic light requirements and vertical distribution of macroalgae in newly ice-free areas in Potter Cove, South Shetland Islands, Antarctica. Polar Biology, 39, 10.1007/s00300-015-1679-y.CrossRefGoogle Scholar
Falk, U., López, D. & Silva-Busso, A. 2018. Multi-year analysis of distributed glacier mass balance modelling and equilibrium line altitude on King George Island, Antarctic Peninsula. The Cryosphere, 12, 10.5194/tc-12-1211-2018.CrossRefGoogle Scholar
Fogt, R.L., Bromwich, D.H. & Hines, K.M. 2011. Understanding the SAM influence on the South Pacific ENSO teleconnection. Climate Dynamics, 36, 10.1007/s00382-010-0905-0.CrossRefGoogle Scholar
Garcia, M.D., Hoffmeyer, M.S., López Abbate, M.C., Barría de Cao, M.S., Pettigrosso, R.E., Almandoz, G.O., et al. 2016. Micro- and mesozooplankton responses during two contrasting summers in a coastal Antarctic environment. Polar Biology, 39, 10.1007/s00300-015-1678-z.CrossRefGoogle Scholar
GMAO (Global Modeling and Assimilation Office). 2015. MERRA-2 tavgM_2d_flx_Nx: 2d, Monthly mean, Time-Averaged, Single-Level, Assimilation, Surface Flux Diagnostics V5.12.4. Greenbelt, MD: Goddard Earth Sciences Data and Information Services Center (GES DISC), 10.5067/0JRLVL8YV2Y4. Accessed: 26 December 2019.Google Scholar
Hass, H.C., Kuhn, G., Monien, P., Brumsack, H.J. & Forwick, M. 2010. Climate fluctuations during the past two millennia as recorded in sediments from Maxwell Bay, South Shetland Islands, West Antarctica. Geological Society of London, London: Special Publication, No. 344, 10.1144/SP344.17.Google Scholar
Höfer, J., et al. 2019. The role of water column stability and wind mixing in the production/export dynamics of two bays in the Western Antarctic Peninsula. Progress in Oceanography. 174, 10.1016/j.pocean.2019.01.005.CrossRefGoogle Scholar
IOC, SCOR & IAPSO. 2010. The International thermodynamic equation of seawater-2010: calculation and use of thermo-dynamic properties, available at: https://www.oceanbestpractices.net/handle/11329/286, 2010, updated October 2015.Google Scholar
Jerosch, K., Scharf, F.K., Deregibus, D., Campana, G.L., Zacher, K., Pehlke, H., et al. 2019. Ensemble modeling of Antarctic macroalgal habitats exposed to glacial melt in a polar fjord. Frontiers in Ecology and Evolution, 7, 10.3389/fevo.2019.00207.CrossRefGoogle Scholar
Kim, H., Ducklow, H.W., Abele, D., Ruiz Barlett, E.M., Buma, A.G.J., Meredith, M.P., et al. 2018. Inter-decadal variability of phytoplankton biomass along the coastal West Antarctic Peninsula. Philosophical Transactions A Royal Society, 37, 10.1098/rsta.2017.0174.Google Scholar
Klöser, H., Ferreyra, G., Schloss, I., Mercuri, G., Laturnus, F. & Curtosi, A. 1993. Seasonal variation of algal growth conditions in sheltered Antarctic bays: the example of Potter Cove King George Island, South Shetlands. Journal of Marine Systems, 4, 10.1016/0924-7963(93)90025-H.CrossRefGoogle Scholar
Klöser, H., Ferreyra, G., Schloss, I., Mercuri, G., Laturnus, F. & Curtosi, A. 1994. Hydrography of Potter Cove, a small fjord-like inlet on King George Island (South Shetlands). Estuarine, Coastal and Shelf Science, 38, 10.1006/ecss.1994.1036.CrossRefGoogle Scholar
Lee, S.H. et al. 2015. Large contribution of small phytoplankton at Marian Cove, King George Island, Antarctica, based on long-term monitoring from 1996 to 2008. Polar Biology, 38, 10.1007/s00300-014-1579-6.CrossRefGoogle Scholar
Lima, D.T. et al. 2019. Abiotic changes driving microphytoplankton functional diversity in Admiralty Bay, King George Island (Antarctica). Frontiers in Marine Science, 6, 10.3389/fmars.2019.00638.CrossRefGoogle Scholar
Marshall, G.J., Orr, A., van Lipzig, N.P.M. & King, J.C. 2006. The impact of a changing Southern Hemisphere Annular Mode on Antarctic Peninsula summer temperatures. Journal of Climate, 19, 10.1175/JCLI3844.1.CrossRefGoogle Scholar
Meredith, M.P., Falk, U., Bers, A.V., Mackensen, A., Schloss, I.R., Ruiz Barlett, E., et al. 2018. Anatomy of a glacial meltwater discharge event in an Antarctic cove. Philosophical Transactions Royal Society A, 376, 10.1098/rsta.2017.0163.Google Scholar
Millard, R.C., Owens, W.B. & Fofonoff, N.P. 1990. On the calculation of the Brunt-Väisälä frequency. Deep Sea Research, 37, 10.1016/0198-0149(90)90035-T.Google Scholar
Monien, D., Monien, P., Brünes, R., Widmer, T., Kappenberg, A., Busso, A.A.S., et al. 2017. Meltwater as a source of potentially bioavailable iron to Antarctica waters. Antarctic Science, 29, 10.1017/S095410201600064X.CrossRefGoogle Scholar
Rignot, E., Jacobs, S., Mouginot, J. & Scheuchl, B. 2013. Ice-shelf melting around Antarctica. Science, 341, 10.1126/science.1235798.CrossRefGoogle ScholarPubMed
Rodrigo, C., Giglio, S. & Varas, A. 2016. Glacier sediment plumes in small bays on the Danco Coast, Antarctic Peninsula. Antarctic Science, 28, 10.1017/S0954102016000237.CrossRefGoogle Scholar
Roese, M. & Drable, M. 1998. Wind-driven circulation in Potter Cove. Report of Polar and Marine Research, 299, 410.2312/BzP_0299_1998.Google Scholar
Rückamp, M., Braun, M., Suckro, S. & Blindow, N. 2011. Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Global Planet Change, 79, 10.1016/j.gloplacha.2011.06.009.CrossRefGoogle Scholar
Ruiz Barlett, E.M., Tosonotto, G.V., Piola, A.R., Sierra, M.E. & Mata, M.R. 2018. On the temporal variability of intermediate and deep waters in the Western Basin of the Bransfield Strait. Deep-Sea Research Part II, 149, 10.1016/j.dsr2.2017.12.010.CrossRefGoogle Scholar
Sahade, R., et al. 2015. Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Science Advance, 1, 10.1126/sciadv.1500050.Google Scholar
Schloss, I.R., Abele, D., Moreau, S., Demers, S., Bers, A.V., González, O. & Ferreyra, G.A. 2012. Response of phytoplankton dynamics to 19-year (1991–2009) climate trends in Potter Cove (Antarctica). Journal of Marine Systems, 92, 10.1016/j.jmarsys.2011.10.006.CrossRefGoogle Scholar
Schloss, I.R., Wasilowska, A., Dumont, D., Almandoz, G.O., Hernando, M.P., Michaud-Tremblay, C.-A., et al. 2014. Limnology and Oceanography, 59, 10.4319/lo.2014.59.1.0195.Google Scholar
Simpson, J.H., Allen, C.M. & Morris, N.C.G. 1978. Fronts on the Continental Shelf. Journal of Geophysical Research, 83, 10.1029/JC083iC09p04607.CrossRefGoogle Scholar
Smith, C.A. & Sardeshmukh, P. 2000. The effect of ENSO on the intraseasonal variance of surface temperature in winter. International Journal of Climatology, 20, 10.1002/1097-0088(20001115)20:13<1543::AID-JOC579>3.0.CO;2-A.3.0.CO;2-A>CrossRefGoogle Scholar
Stammerjohn, S.E., Martinson, D.G., Smith, R.C. & Yuan, X. 2008. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode. Journal of Geophysical Research, 113, 10.1029/2007JC004269.CrossRefGoogle Scholar
Stuecker, M.F., Bitz, C.M. & Armour, K.C. 2017. Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season. Geophysical Research Letters, 44, 10.1002/2017GL074691.CrossRefGoogle Scholar
Syvitski, J.P.M. 1989. On the deposition of sediment within glacier-influenced fjords: oceanographic controls. Marine Geology, 85, 10.1016/0025-3227(89)90158-8.CrossRefGoogle Scholar
Thompson, D.W.J. & Wallace, J.M. 2000. Annular modes in the extratropical circulation. Part I: month-to-month variability. Journal of Climate, 13, 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.Google Scholar
Turner, J. et al. 2016. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535, 10.1038/nature18645.CrossRefGoogle ScholarPubMed
Uotila, P., Lynch, A.H., Cassano, J.J. & Cullather, R.I. 2007. Changes in Antarctic net precipitation in the 21st century based on Intergovernmental Panel on Climate Change (IPCC) model scenarios. Journal of Geophysical Research, 112, 10.1029/2006JD007482.CrossRefGoogle Scholar
Vaughan, D.G., Marshall, G.J., Connelley, W.M., Parkinson, C., Mulvaney, R., Hodgson, D.A., et al. 2003. Recent rapid regional climate warming on the Antarctic Peninsula. Climate Change, 60, 10.1023/A:1026021217991.CrossRefGoogle Scholar
Wiencke, C. & Amsler, C.D. 2012. Seaweeds and their communities in polar regions. In Wiencke, C. & Bischof, K. eds. Seaweed biology, novel insights into ecophysiology, ecology and utilization. Heidelberg: Springer, 10.1007/978-3-642-28451-9_13.CrossRefGoogle Scholar
Wölfl, A.C., Lim, C.H., Hass, H.C., Lindhorst, S., Tosonotto, G., Lettmann, K.A., et al. 2014. Distribution and characteristics of marine habitats in a subpolar bay based on hydroacoustics and bed shear stress estimates - Potter Cove, King George Island, Antarctica. Geo-Marine Letter, 34, 10.1007/s00367-014-0375-1.CrossRefGoogle Scholar
Yuan, X. 2004. ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms. Antarctic Science, 16, 10.1017/S0954102004002238.CrossRefGoogle Scholar
Supplementary material: PDF

Ruiz Barlett et al. supplementary material

Ruiz Barlett et al. supplementary material

Download Ruiz Barlett et al. supplementary material(PDF)
PDF 1.7 MB