Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T19:48:50.503Z Has data issue: false hasContentIssue false

Iron localization in Acarospora colonizing schist on Signy Island

Published online by Cambridge University Press:  08 October 2012

O.W. Purvis*
Affiliation:
Natural History Museum, Cromwell Rd, London SW7 5BD, UK Camborne School of Mines, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
P. Convey
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 OET, UK
M.J. Flowerdew
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 OET, UK
H.J. Peat
Affiliation:
British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge CB3 OET, UK
J. Najorka
Affiliation:
Natural History Museum, Cromwell Rd, London SW7 5BD, UK
A. Kearsley
Affiliation:
Natural History Museum, Cromwell Rd, London SW7 5BD, UK

Abstract

A small, inconspicuous lichen, Acarospora cf. badiofusca, was discovered colonizing iron-stained quartz mica schists on the lower slope of Manhaul Rock, a recently exposed nunatak on the McLeod Glacier, Signy Island, South Orkney Islands. Thallus colour ranged from rust on exposed rock surfaces to paler orange and green in shaded crevices. This study addressed the hypothesis that colour reflects element localization, and considered substance localization within lichen tissues and responses to stress. Electron microprobe analysis of specimens confirmed that Fe is localized principally in the outer rust-coloured part of the cortex, confirming that the colour reflects Fe localization. Oxalates, widely reported as contributing to tolerance mechanisms to environmental stress, were not detected using X-ray diffraction. The upper thallus surface consisted of sub-micron particulate phases containing Fe, Al and O, suggesting mixed oxide/hydroxide phases are present and play a role in photoprotection.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamo, P., Colombo, C.Violante, P. 1997. Iron oxides and hydroxides in the weathering interface between Stereocaulon vesuvianum and volcanic rock. Clay Minerals, 32, 453461.CrossRefGoogle Scholar
Ascaso, C., Galvan, J.Rodriguez-Pascual, C. 1982. The weathering of calcareous rocks by lichens. Pedobiologia, 24, 219.CrossRefGoogle Scholar
Barker, W.W.Banfield, J.F. 1996. Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiontic communities. Chemical Geology, 132, 5569.CrossRefGoogle Scholar
Brodo, I.M. 1973. Substrate ecology. In Ahmadjian, V., ed. The lichens. New York: Academic Press, 401441.CrossRefGoogle Scholar
Brown, D.H. 1976. Mineral uptake by lichens. In Brown, D.H., Hawksworth, D.L.&Bailey, R.H., eds. Lichenology: progress and problems. London: Academic Press, 419439.Google Scholar
Edwards, H.G.M., Wynn-Williams, D.D.Villar, S.E.J. 2004. Biological modification of haematite in Antarctic cryptoendolithic communities. Journal of Raman Spectroscopy, 35, 470474.CrossRefGoogle Scholar
Elix, J.A.Stocker-Wörgötter, E. 2008. Biochemistry and secondary metabolites. In Nash III, T.H., ed. Lichen biology. Cambridge: Cambridge University Press, 104133.CrossRefGoogle Scholar
Flowerdew, M.J., Daly, J.S.Riley, T.R. 2007. New Rb-Sr mineral ages temporally link plume events with accretion at the margin of Gondwana. In Cooper, A.K. & Raymond, C.R., eds. Antarctica: a keystone in a changing world - Online Proceedings of the 10th ISAES, USGS Open-File Report 2007-1047, Short Research Paper 012, 10.3133/of2007-1047.srp012.Google Scholar
Fomina, M.A., Burford, E.P.Gadd, G.M. 2006. Fungal dissolution and transformation of minerals: significance for nutrient and metal mobility. In Gadd, G.M., ed. Fungi in biogeochemical cycles. Cambridge: Cambridge University Press, 236266.CrossRefGoogle Scholar
Friedmann, E.I. 1982. Endolithic microorganisms in the Antarctic cold desert. Science, 215, 10451053.CrossRefGoogle ScholarPubMed
Gauslaa, Y.McEvoy, M. 2005. Seasonal changes in solar radiation drive acclimation of the sun-screening compound parietin in the lichen Xanthoria parietina. Basic and Applied Ecology, 6, 7582.CrossRefGoogle Scholar
Green, T.G.A., Nash III, T.H.Lange, O.L. 2008. Physiological ecology of carbon dioxide exchange. In Nash III, T.H., ed. Lichen biology. Cambridge: Cambridge University Press, 152181.CrossRefGoogle Scholar
Grime, J.P. 1979. Plant strategies and vegetation processes. Chichester: John Wiley, 222 pp.Google Scholar
Haas, J.R.Purvis, O.W. 2006. Lichen biogeochemistry. In Gadd, G.M., ed. Fungi in biogeochemical cycles. Cambridge: Cambridge University Press, 344376.CrossRefGoogle Scholar
Hafellner, J., Kärnefelt, I.Wirth, V., eds. 2010. Diversity and ecology of lichens in polar and mountain ecosystems. Stuttgart: J. Cramer in der Gebrüder Borntraeger Verlagsbuchhandlung, 389 pp.Google Scholar
Hertel, H. 1988. Problems in monographing Antarctic crustose lichens. Polarforschung, 58, 6576.Google Scholar
Holder, J.M., Wynn-Williams, D.D., Perez, F.R.Edwards, H.G.M. 2000. Raman spectroscopy of pigments and oxalates in situ within epilithic lichens: Acarospora from the Antarctic and Mediterranean. New Phytologist, 145, 271280.CrossRefGoogle Scholar
Hopf, J., Langenhorst, F., Pollok, K., Merten, D.Kothe, E. 2009. Influence of microorganisms on biotite dissolution: an experimental approach. Chemie der Erde, 69, 4556.CrossRefGoogle Scholar
Huneck, S.Yoshimura, I. 1996. Identification of lichen substances. Berlin: Springer, 493 pp.CrossRefGoogle Scholar
Johnston, C.G.Vestal, J.R. 1993. Biogeochemistry of oxalate in the Antarctic cryptoendolithic lichen-dominated community. Microbial Ecology, 25, 305319.CrossRefGoogle ScholarPubMed
Jones, D., Wilson, M.J.McHardy, W.J. 1981. Lichen weathering of rock-forming minerals - application of scanning electron-microscopy and micro-probe analysis. Journal of Microscopy, 124, 95104.CrossRefGoogle Scholar
Jones, H.G., Pomeroy, J.W., Walker, D.A.Hoham, R.W., eds. 2001. Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge: Cambridge University Press, 378 pp.Google Scholar
Lange, O.L.Ziegler, H. 1963. Der Schwermetallgehalt von Flechten aus dem Acarosporetum sinopicae auf Erzschlackenhalden des Harzes. I. Eisen und Kupfer. Mitteilungen der Floristisch-soziologischen Arbeits gemeinschaft, 10, 156183.Google Scholar
Mathey, A., Dingley, D., van Vaeck, L.Young, R. 1994. Cathodoluminescence study of the lichen Acarospora hilaris. Journal de Physique, 13, 791792.Google Scholar
Matthews, D.H.Maling, D.H. 1967. The geology of the South Orkney Islands. 1. Signy Island. Falkland Islands Dependencies Survey Scientific Reports, No. 25, 32 pp.Google Scholar
Nash III, T.H. 2008. Lichen biology, 2nd ed. Cambridge, Cambridge University Press, 486 pp.CrossRefGoogle Scholar
Noeske, O., Läuchli, A., Lange, O.L., Vieweg, G.H.Ziegler, H. 1970. Konzentration und Lokalisierung von Schwermetallen in Flechten der Erzschlackenhalden des Harzes. Deutsche Botanische Gesellschaft Neue Folge, 4, 6779.Google Scholar
Øvstedal, D.O.Smith, R.I.L. 2001. Lichens of Antarctica and South Georgia: a guide to their identification and ecology. Cambridge: Cambridge University Press, 411 pp.Google Scholar
Purvis, O.W.Pawlik-Skowrońska, B. 2008. Lichens and metals. In Avery, S.V., Stratford, M. & van West, P., eds. Stress in yeasts and filamentous fungi. Amsterdam: Elsevier, 175200.CrossRefGoogle Scholar
Purvis, O.W., Kearsley, A., Cressey, G., Crewe, A.T.Wedin, M. 2008a. Mineralization in rust-coloured Acarospora. Geomicrobiology Journal, 25, 142148.CrossRefGoogle Scholar
Purvis, O.W., Kearsley, A., Cressey, G., Batty, L.C., Jenkins, D.A., Crewe, A.T.Wedin, M. 2008b. Mineralization in rust-coloured Acarospora. In Chen, Z.-S., Lee, D.-Y. & Lin, T.-S., eds. Proceedings of the 14th International Conference on Heavy Metals in the Environment. Taipei, Taiwan, November 1623, 2008. Taiwan: Department of Agricultural Chemistry, National Taiwan University, 472–474.Google Scholar
Quayle, W.C., Peck, L.S., Peat, H., Ellis-Evans, J.C.Harrigan, P.R. 2002. Extreme responses to climate change in Antarctic lakes. Science, 295, 645.CrossRefGoogle ScholarPubMed
Smith, R.I.L. 1990. Signy Island as a paradigm of biological and environmental change in Antarctic terrestrial ecosystems. In Kerry, K.R. & Hempel, G., eds. Antarctic ecosystems, ecological change and conservation. Berlin: Springer, 3250.CrossRefGoogle Scholar
Smith, R.I.L. 2007. Half a continent in a square kilometre: the exceptional diversity of a small Antarctic island. In Kärnefelt, I. & Thell, A., eds. Lichenological contributions in honour of David Galloway. Bibliotheca Lichenologica, 95. Stuttgart: J. Cramer, 387403.Google Scholar
Storey, B.C.Meneilly, A.W. 1985. Petrogenesis of metamorphic rocks within a subduction-accretion terrane, Signy Island, South Orkney Islands. Journal of Metamorphic Geology, 3, 2142.CrossRefGoogle Scholar
Syers, J.K.Iskandar, I.K. 1973. Pedogenetic significance of lichens. In Ahmadjian, V. & Hall, M.E., eds. The lichens. London: Academic Press, 225248.CrossRefGoogle Scholar
Tanner, P.W.G., Pankhurst, R.J.Hyden, G. 1982. Radiometric evidence for the age of the subduction complex in the South Orkney and South Shetland Islands, West Antarctic. Journal of the Geological Society, 139, 683690.CrossRefGoogle Scholar
Taylor, K.G.Konhauser, K.O. 2011. Iron in earth surface systems: a major player in chemical and biological processes. Elements, 7, 8388.CrossRefGoogle Scholar
Wedin, M., Westberg, M., Crewe, A.T., Tehler, A.Purvis, O.W. 2009. Species delimitation and evolution of metal bioaccumulation in the lichenized Acarospora smaragdula (Ascomycota, Fungi) complex. Cladistics, 25, 161172.CrossRefGoogle ScholarPubMed
Wierzchos, J., Ascaso, C., Sancho, L.G.Green, A. 2003. Iron-rich diagenetic minerals are biomarkers of microbial activity in Antarctic rocks. Geomicrobiology Journal, 20, 1524.CrossRefGoogle Scholar
Williamson, B.J., McLean, J.Purvis, O.W. 1998. Application of X-ray element mapping across the lichen-rock interface. Journal of Microscopy, 191, 9196.CrossRefGoogle Scholar
Wirth, V. 1972. Die Silikatflechten - Gemeinshaften im ausseralpinen Zentraleuropa. Dissertationes Botanicae, 17, 1306.Google Scholar
Wynn-Wiliams, D.D., Edwards, H.G.M., Newton, E.M.Holder, J.M. 2002. Pigmentation as a survival strategy for ancient and modern photosynthetic microbes under high ultraviolet stress on planetary surfaces. International Journal of Astrobiology, 1, 3949.CrossRefGoogle Scholar