Published online by Cambridge University Press: 30 May 2022
Laccases are enzymes from the multi-copper oxidase family that have gathered a lot of attention due to their wide range of substrates, their interspecies variability and their still elusive mechanism of action. The presence of four copper atoms in their active site makes them an interesting model for the study of the relationship between the structure and function of proteins. It is possible to find them in fungi, plants and prokaryotes. Bacterial laccases display many advantages over fungal laccases in terms of their application. They have, in general, a greater thermal stability and a different pH profile, which contributes to widening their field of possible application. In the present work, a novel laccase from an Antarctic microorganism, Geobacillus sp. ID17, is purified and characterized. This is the first Antarctic bacterial laccase to be functionally described. It was found to be active at neutral pH and to have greater activity at 55°C. Its catalytic constants are in the order of other bacterial laccases. Screening for different potential substrates was also performed, showing that this novel laccase is more selective than commercial laccases. This enzyme could find potential application in the generation of gallic acid polymers or in organic synthesis in contexts where meticulous substrate discrimination is needed.