Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T19:49:21.092Z Has data issue: false hasContentIssue false

Isolation and spectral characterization of cadmium binding metallothionein

Published online by Cambridge University Press:  16 November 2007

Hyun Park*
Affiliation:
Korea Polar Research Institute, Korea Ocean Research and Development Institute, Songdo-dong 7-50, Yeonsu-gu, Incheon 406-840, South Korea
In-Young Ahn
Affiliation:
Korea Polar Research Institute, Korea Ocean Research and Development Institute, Songdo-dong 7-50, Yeonsu-gu, Incheon 406-840, South Korea
Heeseon J. Choi
Affiliation:
Korea Polar Research Institute, Korea Ocean Research and Development Institute, Songdo-dong 7-50, Yeonsu-gu, Incheon 406-840, South Korea Present address:Geosystem Research Corporation, 306 Hanlim Human Tower, 1-40 Geumjung-Dong, Gunpo 435-824, South Korea
Jung Youn Ji
Affiliation:
Korea Polar Research Institute, Korea Ocean Research and Development Institute, Songdo-dong 7-50, Yeonsu-gu, Incheon 406-840, South Korea
*
*Corresponding author:hpark@kopri.re.kr

Abstract

A cadmium (Cd)-binding protein was isolated and characterized from the Antarctic clam Laternula elliptica after experimental exposure to a high concentration of Cd. Cd-binding metallothioneins (MTs) in the cytosol were purified using a procedure based on gel permeation and ion-exchange chromatography. The purified MTs were recognized by MT antibodies in a Western blotting assay. MALDI-TOF MS analyses showed that the molecular mass of the purified MTs was 7.27 kDa, which is typical of MTs found in marine invertebrates. The Cd binding to MT, reflected by the redistribution of Cd ions, was monitored by spectrophotometry. The absorption spectra profiles indicated the presence of Cd-MT complexes, and a 4 nm red shift of the unresolved lowest energy-absorption band occurred when five equivalents of Cd (II) were incorporated.

Type
Biological Sciences
Copyright
Copyright © Antarctic Science Ltd 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, I.-Y., Kang, J. & Kim, K.W. 2001. The effect of body size on metal accumulations in the bivalve Laternula elliptica. Antarctic Science, 13, 355362.Google Scholar
Ahn, I.-Y., Lee, S.H., Kim, K.T., Shim, J.H. & Kim, D.Y. 1996. Baseline heavy metal concentrations in the Antarctic clam Laternula elliptica in Maxwell Bay, King George Island, Antarctica. Marine Pollution Bulletin, 32, 592598.Google Scholar
Amiard, J.-C., Amiard-Triquet, C., Barka, S., Pellerin, J. & Rainbow, P.S. 2006. Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquatic Toxicology, 76, 160202.CrossRefGoogle ScholarPubMed
Choi, H.J., Ahn, I.-Y., Ryu, S.K., Lee, Y.S., Lee, I.S. & Jeong, K.H. 2001. Preliminary evidence for a metallothionein-like Cd-binding protein in the kidney of the Antarctic clam Laternula elliptica. Ocean and Polar Research, 23, 337345.Google Scholar
Chubatsu, L.S. & Meneghini, R. 1993. Metallothionein protects DNA from oxidative damage. Biochemical Journal, 291, 193198.CrossRefGoogle ScholarPubMed
Dallinger, R., Berger, B., Hunziker, P. & Kägi, J.H.R. 1997. Metallothionein in snail Cd and Cu metabolism. Nature, 388, 237238.CrossRefGoogle ScholarPubMed
De Moreno, J.E.A., Gerpr, M.S., Moreno, V.J. & Vodopivez, C. 1997. Heavy metals in Antarctic organisms. Polar Biology, 17, 131140.CrossRefGoogle Scholar
Hartmann, H.J., Li, Y.J. & Weser, U. 1992. Analogous copper (I) coordination in metallothionein from yeast and the separate domains of the mammalian protein. Biometals, 5, 187191.CrossRefGoogle Scholar
Hathout, Y., Reynolds, K.J., Szilagyi, Z. & Fenselau, C. 2002. Metallothionein dimers studied by nano-spray mass spectrometry. Journal of Inorganic Biochemistry, 88, 119122.Google Scholar
Kägi, J.H.R. 1991. Overview of metallothionein, Methods in Enzymology, 205, 613626.CrossRefGoogle ScholarPubMed
Lemoine, S., Bigot, Y., Sellos, D., Cosson, R.P. & Laulier, M. 2000. Metallothionein isoforms in Mytilus edulis (Mollusca, Bivalvia): complementary DNA characterization and quantification of expression in different organs after exposure to cadmium, zinc, and copper. Marine Biotechnology, 2, 195203.CrossRefGoogle ScholarPubMed
Mitra, P., Pal, A.K., Basu, D. & Hati, Rn. 1994. A staining procedure using Coomassie brilliant blue G-250 in phosphoric acid for detection of protein bands with high resolution in polyacrylamide gel and nitrocellulose membrane. Analytical Biochemistry, 223, 327329.CrossRefGoogle ScholarPubMed
Narula, S.S., Armitage, I.M., Brouwer, M. & Enghild, J.J. 1993. Establishment of two distinct protein domains in blue crab Callinectes sapidus metallothionein-I through heteronuclear (1H-113Cd) and mononuclear (1H-1H) correlation NMR experiments. Magnetic Resonance in Chemistry, 31, S96S103.Google Scholar
Negri, A., Burns, K., Boyle, S., Brinkman, D. & Webster, N. 2006. Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environmental Pollution, 143, 456467.Google Scholar
Nemer, M., Travaglini, E.C., Rondinelli, E. & D′alonzo, J. 1984. Developmental regulation, induction, and embryonic tissue specificity of sea urchin metallothionein gene expression. Developmental Biology, 102, 471482.CrossRefGoogle ScholarPubMed
Otvos, J.D., Olafson, R.W. & Armitage, I.M. 1982. Structure of an invertebrate metallothionein from Scylla serrata. Journal of Biological Chemistry, 257, 24272431.CrossRefGoogle ScholarPubMed
Park, H., Ahn, I.-Y., Choi, H.J., Pyo, S.H. & Lee, H.E. 2007. Cloning, expression and characterization of metallothionein from the Antarctic clam Laternula elliptica. Protein Expression and Purification, 52, 8288.CrossRefGoogle ScholarPubMed
Riek, R., Precheur, B., Wang, Y., Mackay, E.A., Wider, G., Guntert, P., Liu, A., Kägi, J.H.R. & Wuthrich, K. 1999. NMR structure of the sea urchin (Strongylocentrotus purpuratus) metallothionein MTA. Journal of Molecular Biology, 291, 417428.Google Scholar
Roesijadi, G., Hansen, K.M. & Unger, M.E. 1997. Metallothionein mRNA accumulation in early development stages of Crassostrea virginica following pre-exposure and challenge with cadmium. Aquatic Toxicology, 39, 185194.Google Scholar
Roesijadi, G., Kielland, S. & Klerks, P. 1989. Purification and properties of novel molluscan metallothioneins. Archives of Biochemistry and Biophysics, 273, 403413.CrossRefGoogle ScholarPubMed
Sato, M. & Bremner, I. 1993. Oxygen free radicals and metallothionein. Free Radical Biology and Medicine, 14, 325337.CrossRefGoogle ScholarPubMed
Towbin, H., Staehelin, T. & Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America, 76, 43504354.Google Scholar
Unger, M.E. & Roesijadi, G. 1996. Increase in metallothionein mRNA accumulation during Cd challenge in oysters preexposed to Cd. Aquatic Toxicology, 34, 185193.Google Scholar
Vasak, M. 1991. Criteria of purity for metallothioneins. Methods in Enzymology, 205, 4447.CrossRefGoogle ScholarPubMed
Wang, Y., Mackay, E.A., Kurasaki, M. & Kägi, J.H.R. 1994. Purification and characterization of recombinant sea urchin metallothionein expressed in Escherichia coli. European Journal of Biochemistry, 225, 449457.CrossRefGoogle ScholarPubMed
Willner, H., Vasak, M. & Kägi, J.H.R. 1987. Cadmium-thiolate clusters in metallothionein: spectrophotometric and spectropolarimetric features. Biochemistry, 26, 62876292.CrossRefGoogle ScholarPubMed
Zangger, K., Shen, G., Oz, G., Otvos, J.D. & Armitage, I.M. 2001. Oxidative dimerization in metallothionein is a result of intermolecular disulphide bonds between cysteines in the alpha-domain. Biochemical Journal, 359, 353360.CrossRefGoogle ScholarPubMed