Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T06:12:50.942Z Has data issue: false hasContentIssue false

Long-term monitoring of atmospheric pollution in the Maritime Antarctic with the lichen Usnea aurantiaco-atra (Jacq.) Bory: a magnetic and elemental study

Published online by Cambridge University Press:  25 October 2021

Claire Carvallo*
Affiliation:
Sorbonne Université, UMR 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, 4 Place Jussieu, 75005 Paris, France
Nathaly Godoy
Affiliation:
Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Sergio Livingtone 1007, Independencia, Santiago, Chile
Bertha Aguilar
Affiliation:
Unidad Morelia del Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Antigua carretera a Pátzcuaro No 8701, Col. Ex Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, Mexico
Claudia Egas
Affiliation:
Universidad de Talca, Instituto Ciencias Biológicas, Av Lircay s/n, Talca, Chile
Raúl Fuentealba
Affiliation:
Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Sergio Livingtone 1007, Independencia, Santiago, Chile
Margarita Préndez
Affiliation:
Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Sergio Livingtone 1007, Independencia, Santiago, Chile

Abstract

Antarctica is a natural research laboratory thanks to its unique climate, geography, flora and fauna. The conservation of Antarctica's environment is monitored through the Madrid Protocol; however, there are local pollution problems associated with human activities such as research and tourism; in particular, there are negative impacts on air quality from the use of fossil fuels. In this work, we studied for the first time the magnetic and elemental characteristics of the lichen Usnea aurantiaco-atra (Jacq.) Bory collected during different years and from various sites in King George Island, Antarctic Peninsula, as well as some samples of its supporting substrate, for long-term monitoring of atmospheric pollution. Several anthropogenic elements (Ni, Pb, Mo, Cd and Zn) have been identified on sites close to human activities, but also on sites far from them. We found that magnetic proxies from U. aurantiaco-atra samples show a spatial correlation with human influence (scientific bases or airstrips). We observed a correlation between magnetic parameters and Ni and, to a lesser extent, with Cr, Co, V and Ag. The results suggest that by using these magnetic and elemental techniques it is possible to implement monitoring with the lichen U. aurantiaco-atra as a bioindicator for some elements of anthropogenic origin.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altintaş, O., Aksoy, M., Ünal, E., Akgöl, O. & Karaaslan, M. 2019. Artificial neural network approach for locomotive maintenance by monitoring dielectric properties of engine lubricant. Measurement, 145, 10.1016/j.measurement.2019.05.087.CrossRefGoogle Scholar
Bajpai, R., Semwal, M. & Singh, C.P. 2018. Suitability of lichens to monitor climate change. Cryptogam Biodiversity and Assessment, Special Volume, 182189.Google Scholar
Boccaccini, A. & Ondracek, Y.G. 1995. Nuevos materiales a partir de residuos. Rheinisch-Westfälische Technische Hochschule Aachen. Ciencia Hoy, 5, 29.5.10-15.Google Scholar
Cao, L., Appel, E., Hu, S., Yin, G., Lin, H. & Rösler, W. 2015. Magnetic response to air pollution recorded by soil and dust-loaded leaves in a changing industrial environment. Atmospheric Environment, 119, 10.1016/j.atmosenv.2015.06.017.CrossRefGoogle Scholar
Carrasco, M.A. & Préndez, M., 1991. Element distribution of some soils of continental Chile and the Antarctic Peninsula. Projection to atmospheric pollution. Water, Air and Soil Pollution, 57–58, 713722.CrossRefGoogle Scholar
Celo, V., Dabek-Zlotorzynska, E. & McCurdy, M. 2015. Chemical characterization of exhaust emissions from selected canadian marine vessels: the case of trace metals and lanthanoids. Environmental Science & Technology, 49, 10.1021/acs.est.5b00127.CrossRefGoogle ScholarPubMed
Chaparro, M.A.E., Lavornia, J.M., Chaparro, M.A.E. & Sinito, A.M. 2013. Biomonitors of urban air pollution: magnetic studies and SEM observations of corticolous foliose and microfoliose lichens and their suitability for magnetic monitoring. Environmental Pollution, 172, 10.1016/j.envpol.2012.08.006.CrossRefGoogle ScholarPubMed
Day, R., Fuller, M. & Schmidt, V.A. 1977. Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Physics of the Earth and Planetary Interiors, 13, 260267.CrossRefGoogle Scholar
Dearing, J.A., Bird, P.M., Dann, R.J.L. & Benjamin, S.F. 1997. Secondary ferrimagnetic minerals in Welsh soils: a comparison of mineral magnetic detection methods and implications for mineral formation. Geophysical Journal International, 130, 10.1111/j.1365-246X.1997.tb01867.x.CrossRefGoogle Scholar
Dunlop, D.J. 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. Journal of Geophysical Research - Solid Earth, 107, 10.1029/2001JB000487.Google Scholar
Gao, L., Zhao, Y., Yang, Z., Liu, J., Liu, X., Zhang, S.-H. & Pei, J. 2018. New paleomagnetic and 40Ar/39Ar geochronological results for the South Shetland Islands, West Antarctica, and their tectonic implications. Journal of Geophysical Research - Solid Earth, 123, 10.1002/2017JB014677.CrossRefGoogle Scholar
Goddard, S.L., Brown, R.J.C. & Ghatora, B.K. 2016. Determination of beryllium concentrations in UK ambient air. Atmospheric Environment, 147, 10.1016/j.atmosenv.2016.10.018.CrossRefGoogle Scholar
Hofman, J., Maher, B.A., Muxworthy, A.R., Wuyts, K., Castanheiro, A. & Samson, R. 2017. Biomagnetic monitoring of atmospheric pollution: a review of magnetic signatures from biological sensors. Environmental Science & Technology, 51, 10.1021/acs.est.7b00832.CrossRefGoogle ScholarPubMed
Hong, N., Guan, Y., Zhong, J., Zhu, P., Ok., Y-S., Hou, D., et al. 2020. Quantitative source tracking of heavy metals contained in urban road deposited sediments. Journal of Hazardous Materials, 393, 10.1016/j.jhazmat.2020.122362.CrossRefGoogle ScholarPubMed
Hope, B.K. 1997. An assessment of the global impact of anthropogenic vanadium. Biogeochemistry, 37, 10.1023/A:1005761904149.CrossRefGoogle Scholar
Lough, G.C., Schauer, J.J., Park, J-S., Shafer, M.M., DeMinter, J.T. & Weinstein, J.P. 2005. Emissions of metals associated with motor vehicle roadways. Environmental Science & Technology, 39, 10.1021/es048715f.CrossRefGoogle ScholarPubMed
Machado, M.R.F., Reynaud Schaefer, C.E.G., Dias, L.E., Bello Simas, F.N., De Melo Benites, V. & De Sá Mendonça, E. 2006. Ornithogenic gelisols (cryosols) from Maritime Antarctica. Soil Science Society of America Journal, 70, 10.2136/sssaj2005.0178.Google Scholar
Marín-Flores, O., Turba, T., Ellefson, C., Wang, K., Breit, J., Ahn, J., et al. 2010. Nanoparticle molybdenum dioxide: a highly active catalyst for partial oxidation of aviation fuels. Applied Catalysis B - Environmental, 98, 10.1016/j.apcatb.2010.05.028.CrossRefGoogle Scholar
Matzka, J. & Maher, B.A. 1999. Magnetic biomonitoring of roadside tree leaves: identification of spatial and temporal variations in vehicle-derived particulates. Atmospheric Environment, 33, 10.1016/S1352-2310(99)00229-0.CrossRefGoogle Scholar
Merian, E. 1984. Introduction on environmental chemistry and global cycles of chromium, nickel, cobalt beryllium, arsenic, cadmium and selenium, and their derivatives. Toxicological & Environmental Chemistry, 8, 10.1080/02772248409357038.CrossRefGoogle Scholar
Mishra, V., Kim, K.-H., Hong, S. & Lee, K. 2004. Aerosol composition and its sources at the King Sejong Station, Antarctic Peninsula. Atmospheric Environment, 38, 10.1016/j.atmosenv.2004.03.052.CrossRefGoogle Scholar
Mróz, T., Szufa, K., Frontasyeva, M.V. Tselmovich, V., Ostrovnaya, T., Kornaś, A., et al. 2018. Determination of element composition and extraterrestrial material occurrence in moss and lichen samples from King George Island (Antarctica) using reactor neutron activation analysis and SEM microscopy. Environmental Science and Pollution Research, 25, 10.1007/s11356-017-0431-2.CrossRefGoogle Scholar
Paoli, L., Guttová, A., Sorbo, S., Grassi, A., Lackovičová, A., Basile, A., et al. 2016. Vitality of the cyanolichen Peltigera praetextata exposed around a cement plant (SW Slovakia): a comparison with green algal lichens. Biologia, 71, 10.1515/biolog-2016-0059.CrossRefGoogle Scholar
Pereira, J.S.F., Morales, D.P., Antes, F.G., Diehl, L.O., Santos, M.F.P., Guimarães, R.C.L., et al. 2010. Determination of metals and metalloids in light and heavy crude oil by ICP-MS after digestion by microwave-induced combustion. Microchemical Journal, 96, 10.1016/j.microc.2009.12.016.CrossRefGoogle Scholar
Poblet, A., Andrade, S., Scagliola, M., Vodopivez, C., Curtosi, A., Pucci, A. & Marcovecchio, J. 1997. The use of epilithic Antarctic lichens (Usnea aurantiaco-atra and U. antarctica) to determine deposition patterns of heavy metals in the Shetland Islands, Antarctica. Science of the Total Environment, 207, 10.1016/S0048-9697(97)00265-9.Google Scholar
Préndez, M., Peralta, H. & Palma, R. 2006. Cuantificación de elementos pesados en un potencial biomonitor de la calidad del aire en la península antártica. In Lancho, J.G., ed., Medioambiente en Iberoamérica Tomo II. Badajoz: Diputacion Provincial de Badajoz, 743750.Google Scholar
Préndez, M., Wachter, J., Vega, C., Flochini, R., Wakayabashi, P. & Morales, J.R. 2009. PM 2.5 aerosols collected in the Antarctic Peninsula with a solar powered sampler during austral summer periods. Atmospheric Environment, 43, 10.1016/j.atmosenv.2009.07.030.CrossRefGoogle Scholar
Sagnotti, L. & Winkler, A. 2012. On the magnetic characterization and quantification of the superparamagnetic fraction of traffic-related urban airborne PM in Rome, Italy. Atmospheric Environment, 59, 10.1016/j.atmosenv.2012.04.058.CrossRefGoogle Scholar
Salo, H., Paturi, P. & Mäkinen, J. 2016. Moss bag (Sphagnum papillosum) magnetic and elemental properties for characterising seasonal and spatial variation in urban pollution. International Journal of Environmental Science and Technology, 13, 10.1007/s13762-016-0998-z.CrossRefGoogle Scholar
Salo, H., Bućko, M., Vaahtovuo, E., Limo, J., Mäkinen, J. & Pesonen, L.J. 2012. Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements of moss bags and lichens. Journal of Geochemical Exploration, 115, 10.1016/j.gexplo.2012.02.009.CrossRefGoogle Scholar
Sancho, L.G. & Pintado, A. 2011. Ecología vegetal en la Antártida. Ecosistemas, 20, 4253.Google Scholar
Sancho, L., Green, A. & Pintado, A. 2007. Slowest to fastest: extreme range in lichen growth rates supports their use as an indicator of climate change in Antarctica. Flora - Morphology, Distribution, Functional Ecology of Plants, 202, 10.1016/j.flora.2007.05.005.Google Scholar
Sekito, T., Dote, Y., Onoue, K., Sakanakura, H. & Nakamura, K. 2014. Characteristics of element distributions in an MSW ash melting treatment system. Waste Management, 34, 10.1016/j.wasman.2014.04.009.CrossRefGoogle Scholar
Song, G.-J., Seo, Y.-C., Pudasainee, D. & Kim, I.-T. 2010. Characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil. Waste Management, 30, 10.1016/j.wasman.2009.10.004.CrossRefGoogle ScholarPubMed
Tin, T., Fleming, Z., Huges, K., Ainley, D., Convey, P., Moreno, C., et al. 2009. Impacts of local human activities on the Antarctic environment. Antarctic Science, 21, 10.1017/S0954102009001722.CrossRefGoogle Scholar
Wolterbeek, B. 2002. Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environmental Pollution, 120, 10.1016/S0269-7491(02)00124-0.CrossRefGoogle Scholar
Supplementary material: PDF

Carvallo et al. supplementary material

Carvallo et al. supplementary material

Download Carvallo et al. supplementary material(PDF)
PDF 213.8 KB